Bromodomain Protein BRD4 Is Required for Estrogen Receptor-Dependent Enhancer Activation and Gene Transcription

The estrogen receptor α (ERα) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We sho...

Full description

Bibliographic Details
Main Authors: Sankari Nagarajan, Tareq Hossan, Malik Alawi, Zeynab Najafova, Daniela Indenbirken, Upasana Bedi, Hanna Taipaleenmäki, Isabel Ben-Batalla, Marina Scheller, Sonja Loges, Stefan Knapp, Eric Hesse, Cheng-Ming Chiang, Adam Grundhoff, Steven A. Johnsen
Format: Article
Language:English
Published: Elsevier 2014-07-01
Series:Cell Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124714004847
Description
Summary:The estrogen receptor α (ERα) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ERα-dependent cancers. We show that BRD4 regulates ERα-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII) and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ERα-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ERα function and potential therapeutic target.
ISSN:2211-1247