Controlling population of the molecular rotational state and the alignment theoretically by tailored femtosecond laser pulse

We demonstrate that the population of the molecular rotational state through a stimulated impulsive Raman excitation can be controlled by tailoring the femtosecond laser pulse with a V-style phase modulation. The results show that, by precisely manipulating the modulation parameters, both the odd an...

Full description

Bibliographic Details
Main Authors: Yunxia Huang, Shuwu Xu
Format: Article
Language:English
Published: The Royal Society 2018-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.171502
Description
Summary:We demonstrate that the population of the molecular rotational state through a stimulated impulsive Raman excitation can be controlled by tailoring the femtosecond laser pulse with a V-style phase modulation. The results show that, by precisely manipulating the modulation parameters, both the odd and even populations of the molecular rotational state can be completely suppressed or reconstructed. Meanwhile, the relative excitation between the odd and even populations can be obtained. Finally, we show that field-free molecular alignment can be controlled due to the modulation of the molecular rotational state populations.
ISSN:2054-5703