Axion dark matter detection by superconducting resonant frequency conversion

Abstract We propose an approach to search for axion dark matter with a specially designed superconducting radio frequency cavity, targeting axions with masses m a ≲ 10 −6 eV. Our approach exploits axion-induced transitions between nearly degenerate resonant modes of frequency ∼ GHz. A scan over axio...

Full description

Bibliographic Details
Main Authors: Asher Berlin, Raffaele Tito D’Agnolo, Sebastian A. R. Ellis, Christopher Nantista, Jeffrey Neilson, Philip Schuster, Sami Tantawi, Natalia Toro, Kevin Zhou
Format: Article
Language:English
Published: SpringerOpen 2020-07-01
Series:Journal of High Energy Physics
Subjects:
Online Access:http://link.springer.com/article/10.1007/JHEP07(2020)088
Description
Summary:Abstract We propose an approach to search for axion dark matter with a specially designed superconducting radio frequency cavity, targeting axions with masses m a ≲ 10 −6 eV. Our approach exploits axion-induced transitions between nearly degenerate resonant modes of frequency ∼ GHz. A scan over axion mass is achieved by varying the frequency splitting between the two modes. Compared to traditional approaches, this allows for parametrically enhanced signal power for axions lighter than a GHz. The projected sensitivity covers unexplored parameter space for QCD axion dark matter for 10 −8 eV ≲ m a ≲ 10 −6 eV and axion-like particle dark matter as light as m a ∼ 10 −14 eV.
ISSN:1029-8479