A note on monotonicity property of Bessel functions
A theorem of Lorch, Muldoon and Szegö states that the sequence {∫jα,kjα,k+1t−α|Jα(t)|dt}k=1∞ is decreasing for α>−1/2, where Jα(t) the Bessel function of the first kind order α and jα,k its kth positive root. This monotonicity property implies Szegö's inequality ∫0xt−αJα(t)dt≥0, when α≥α′ an...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
1997-01-01
|
Series: | International Journal of Mathematics and Mathematical Sciences |
Subjects: | |
Online Access: | http://dx.doi.org/10.1155/S0161171297000756 |
id |
doaj-b9e9b54013504260a7c695a370180c0c |
---|---|
record_format |
Article |
spelling |
doaj-b9e9b54013504260a7c695a370180c0c2020-11-25T00:23:21ZengHindawi LimitedInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251997-01-0120356156610.1155/S0161171297000756A note on monotonicity property of Bessel functionsStamatis Koumandos0Department of Pure Mathematics, The University of Adelaide, Adelaide 5005, AustraliaA theorem of Lorch, Muldoon and Szegö states that the sequence {∫jα,kjα,k+1t−α|Jα(t)|dt}k=1∞ is decreasing for α>−1/2, where Jα(t) the Bessel function of the first kind order α and jα,k its kth positive root. This monotonicity property implies Szegö's inequality ∫0xt−αJα(t)dt≥0, when α≥α′ and α′ is the unique solution of ∫0jα,2t−αJα(t)dt=0.http://dx.doi.org/10.1155/S0161171297000756Bessel functionspositive integral of Besel functionsmonotonicity property of Bessel functions. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Stamatis Koumandos |
spellingShingle |
Stamatis Koumandos A note on monotonicity property of Bessel functions International Journal of Mathematics and Mathematical Sciences Bessel functions positive integral of Besel functions monotonicity property of Bessel functions. |
author_facet |
Stamatis Koumandos |
author_sort |
Stamatis Koumandos |
title |
A note on monotonicity property of Bessel functions |
title_short |
A note on monotonicity property of Bessel functions |
title_full |
A note on monotonicity property of Bessel functions |
title_fullStr |
A note on monotonicity property of Bessel functions |
title_full_unstemmed |
A note on monotonicity property of Bessel functions |
title_sort |
note on monotonicity property of bessel functions |
publisher |
Hindawi Limited |
series |
International Journal of Mathematics and Mathematical Sciences |
issn |
0161-1712 1687-0425 |
publishDate |
1997-01-01 |
description |
A theorem of Lorch, Muldoon and Szegö states that the sequence
{∫jα,kjα,k+1t−α|Jα(t)|dt}k=1∞
is decreasing for α>−1/2, where Jα(t) the Bessel function of the first kind order α and jα,k its kth
positive root. This monotonicity property implies Szegö's inequality
∫0xt−αJα(t)dt≥0,
when α≥α′ and α′ is the unique solution of ∫0jα,2t−αJα(t)dt=0. |
topic |
Bessel functions positive integral of Besel functions monotonicity property of Bessel functions. |
url |
http://dx.doi.org/10.1155/S0161171297000756 |
work_keys_str_mv |
AT stamatiskoumandos anoteonmonotonicitypropertyofbesselfunctions AT stamatiskoumandos noteonmonotonicitypropertyofbesselfunctions |
_version_ |
1725357524535738368 |