Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations

This article concerns the expressive power of depth in neural nets with ReLU activations and a bounded width. We are particularly interested in the following questions: What is the minimal width <inline-formula> <math display="inline"> <semantics> <mrow> <msub>...

Full description

Bibliographic Details
Main Author: Boris Hanin
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/7/10/992
id doaj-b9fb5da8d50b4557b1734a61e866ec72
record_format Article
spelling doaj-b9fb5da8d50b4557b1734a61e866ec722020-11-25T01:56:43ZengMDPI AGMathematics2227-73902019-10-0171099210.3390/math7100992math7100992Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU ActivationsBoris Hanin0Department of Mathematics, Texas A&amp;M, College Station, TX 77843, USAThis article concerns the expressive power of depth in neural nets with ReLU activations and a bounded width. We are particularly interested in the following questions: What is the minimal width <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> so that ReLU nets of width <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> (and arbitrary depth) can approximate any continuous function on the unit cube <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> <mi>d</mi> </msup> </semantics> </math> </inline-formula> arbitrarily well? For ReLU nets near this minimal width, what can one say about the depth necessary to approximate a given function? We obtain an essentially complete answer to these questions for convex functions. Our approach is based on the observation that, due to the convexity of the ReLU activation, ReLU nets are particularly well suited to represent convex functions. In particular, we prove that ReLU nets with width <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> can approximate any continuous convex function of <i>d</i> variables arbitrarily well. These results then give quantitative depth estimates for the rate of approximation of any continuous scalar function on the <i>d</i>-dimensional cube <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> <mi>d</mi> </msup> </semantics> </math> </inline-formula> by ReLU nets with width <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>+</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>.https://www.mdpi.com/2227-7390/7/10/992deep neural netsrelu networksapproximation theory
collection DOAJ
language English
format Article
sources DOAJ
author Boris Hanin
spellingShingle Boris Hanin
Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
Mathematics
deep neural nets
relu networks
approximation theory
author_facet Boris Hanin
author_sort Boris Hanin
title Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
title_short Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
title_full Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
title_fullStr Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
title_full_unstemmed Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations
title_sort universal function approximation by deep neural nets with bounded width and relu activations
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2019-10-01
description This article concerns the expressive power of depth in neural nets with ReLU activations and a bounded width. We are particularly interested in the following questions: What is the minimal width <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> so that ReLU nets of width <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>w</mi> <mi>min</mi> </msub> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> (and arbitrary depth) can approximate any continuous function on the unit cube <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> <mi>d</mi> </msup> </semantics> </math> </inline-formula> arbitrarily well? For ReLU nets near this minimal width, what can one say about the depth necessary to approximate a given function? We obtain an essentially complete answer to these questions for convex functions. Our approach is based on the observation that, due to the convexity of the ReLU activation, ReLU nets are particularly well suited to represent convex functions. In particular, we prove that ReLU nets with width <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>+</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> can approximate any continuous convex function of <i>d</i> variables arbitrarily well. These results then give quantitative depth estimates for the rate of approximation of any continuous scalar function on the <i>d</i>-dimensional cube <inline-formula> <math display="inline"> <semantics> <msup> <mrow> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mrow> <mi>d</mi> </msup> </semantics> </math> </inline-formula> by ReLU nets with width <inline-formula> <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>+</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula>.
topic deep neural nets
relu networks
approximation theory
url https://www.mdpi.com/2227-7390/7/10/992
work_keys_str_mv AT borishanin universalfunctionapproximationbydeepneuralnetswithboundedwidthandreluactivations
_version_ 1724978327267049472