The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2

<p>The Aerosol Robotic Network (AERONET) Version 3 (V3) aerosol retrieval algorithm is described, which is based on the Version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many...

Full description

Bibliographic Details
Main Authors: A. Sinyuk, B. N. Holben, T. F. Eck, D. M. Giles, I. Slutsker, S. Korkin, J. S. Schafer, A. Smirnov, M. Sorokin, A. Lyapustin
Format: Article
Language:English
Published: Copernicus Publications 2020-06-01
Series:Atmospheric Measurement Techniques
Online Access:https://www.atmos-meas-tech.net/13/3375/2020/amt-13-3375-2020.pdf
id doaj-ba68b2547e754617837e9f7ab7af9fdc
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author A. Sinyuk
A. Sinyuk
B. N. Holben
T. F. Eck
T. F. Eck
D. M. Giles
D. M. Giles
I. Slutsker
I. Slutsker
S. Korkin
S. Korkin
J. S. Schafer
J. S. Schafer
A. Smirnov
A. Smirnov
M. Sorokin
M. Sorokin
A. Lyapustin
spellingShingle A. Sinyuk
A. Sinyuk
B. N. Holben
T. F. Eck
T. F. Eck
D. M. Giles
D. M. Giles
I. Slutsker
I. Slutsker
S. Korkin
S. Korkin
J. S. Schafer
J. S. Schafer
A. Smirnov
A. Smirnov
M. Sorokin
M. Sorokin
A. Lyapustin
The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
Atmospheric Measurement Techniques
author_facet A. Sinyuk
A. Sinyuk
B. N. Holben
T. F. Eck
T. F. Eck
D. M. Giles
D. M. Giles
I. Slutsker
I. Slutsker
S. Korkin
S. Korkin
J. S. Schafer
J. S. Schafer
A. Smirnov
A. Smirnov
M. Sorokin
M. Sorokin
A. Lyapustin
author_sort A. Sinyuk
title The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
title_short The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
title_full The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
title_fullStr The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
title_full_unstemmed The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2
title_sort aeronet version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to version 2
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2020-06-01
description <p>The Aerosol Robotic Network (AERONET) Version 3 (V3) aerosol retrieval algorithm is described, which is based on the Version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many of the retrieved aerosol parameters. Changes in the V3 aerosol retrieval algorithm include (1) a new polarized radiative transfer code (RTC), which replaced the scalar RTC of V2, (2) detailed characterization of gas absorption by adding <span class="inline-formula">NO<sub>2</sub></span> and <span class="inline-formula">H<sub>2</sub>O</span> to specify total gas absorption in the atmospheric column, specification of vertical profiles of all the atmospheric species, (3) new bidirectional reflectance distribution function (BRDF) parameters for land sites adopted from the MODIS BRDF/Albedo product, (4) a new version of the extraterrestrial solar flux spectrum, and (5) a new temperature correction procedure of both direct Sun and sky radiance measurements. The potential effect of each change in V3 on single scattering albedo (SSA) retrievals was analyzed. The operational almucantar retrievals of V2 versus V3 were compared for four AERONET sites: GSFC, Mezaira, Mongu, and Kanpur. Analysis showed very good agreement in retrieved parameters of the size distributions. Comparisons of SSA retrievals for dust aerosols (Mezaira) showed a good agreement in 440&thinsp;nm SSA, while for longer wavelengths V3 SSAs are systematically higher than those of V2, with the largest mean difference at 675&thinsp;nm due to cumulative effects of both extraterrestrial solar flux and BRDF changes. For non-dust aerosols, the largest SSA deviation is at 675&thinsp;nm due to differences in extraterrestrial solar flux spectrums used in each version. Further, the SSA 675&thinsp;nm mean differences are very different for weakly (GSFC) and strongly (Mongu) absorbing aerosols, which is explained by the lower sensitivity to a bias in aerosol scattering optical depth by less absorbing aerosols. A new hybrid (HYB) sky radiance measurement scan is introduced and discussed. The HYB combines features of scans in two different planes to maximize the range of scattering angles and achieve scan symmetry, thereby allowing for cloud screening and spatial averaging, which is an advantage over the principal plane scan that lacks robust symmetry. We show that due to an extended range of scattering angles, HYB SSA retrievals for dust aerosols exhibit smaller variability with solar zenith angles (SZAs) than those of almucantar (ALM), which allows extension of HYB SSA retrievals to SZAs less than 50<span class="inline-formula"><sup>∘</sup></span> to as small as 25<span class="inline-formula"><sup>∘</sup></span>. The comparison of SSA retrievals from closely time-matched HYB and ALM scans in the 50 to 75<span class="inline-formula"><sup>∘</sup></span> SZA range showed good agreement with the differences below <span class="inline-formula">∼0.005</span>. We also present an approach to estimate retrieval uncertainties which utilizes the variability in retrieved parameters generated by perturbing both measurements and auxiliary input parameters as a proxy for retrieval uncertainty. The perturbations in measurements and auxiliary inputs are assumed as estimated biases in aerosol optical depth (AOD), radiometric calibration of sky radiances combined with solar spectral irradiance, and surface reflectance. For each set of Level 2 Sun/sky radiometer observations, 27 inputs corresponding to 27 combinations of biases were produced and separately inverted to generate the following statistics of the inversion results: average, standard deviation, minimum and maximum values. From these statistics, standard deviation (labeled U27)<span id="page3376"/> is used as a proxy for estimated uncertainty, and a lookup table (LUT) approach was implemented to reduce the computational time. The U27 climatological LUT was generated from the entire AERONET almucantar (1993–2018) and hybrid (2014–2018) scan databases by binning U27s in AOD (440&thinsp;nm), Angström exponent (AE, 440–870&thinsp;nm), and SSA (440, 675, 870, 1020&thinsp;nm). Using this LUT approach, the uncertainty estimates U27 for each individual V3 Level 2 retrieval can be obtained by interpolation using the corresponding measured and inverted combination of AOD, AE, and SSA.</p>
url https://www.atmos-meas-tech.net/13/3375/2020/amt-13-3375-2020.pdf
work_keys_str_mv AT asinyuk theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asinyuk theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT bnholben theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT tfeck theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT tfeck theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT dmgiles theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT dmgiles theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT islutsker theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT islutsker theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT skorkin theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT skorkin theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT jsschafer theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT jsschafer theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asmirnov theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asmirnov theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT msorokin theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT msorokin theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT alyapustin theaeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asinyuk aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asinyuk aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT bnholben aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT tfeck aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT tfeck aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT dmgiles aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT dmgiles aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT islutsker aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT islutsker aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT skorkin aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT skorkin aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT jsschafer aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT jsschafer aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asmirnov aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT asmirnov aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT msorokin aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT msorokin aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
AT alyapustin aeronetversion3aerosolretrievalalgorithmassociateduncertaintiesandcomparisonstoversion2
_version_ 1724708881286823936
spelling doaj-ba68b2547e754617837e9f7ab7af9fdc2020-11-25T02:58:02ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482020-06-01133375341110.5194/amt-13-3375-2020The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2A. Sinyuk0A. Sinyuk1B. N. Holben2T. F. Eck3T. F. Eck4D. M. Giles5D. M. Giles6I. Slutsker7I. Slutsker8S. Korkin9S. Korkin10J. S. Schafer11J. S. Schafer12A. Smirnov13A. Smirnov14M. Sorokin15M. Sorokin16A. Lyapustin17Science Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USAUniversities Space Research Association (USRA), Columbia, MD 21046, USAScience Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USAScience Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USAUniversities Space Research Association (USRA), Columbia, MD 21046, USAScience Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USAScience Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USAScience Systems and Applications, Inc. (SSAI), Lanham, MD 20706, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USANASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA<p>The Aerosol Robotic Network (AERONET) Version 3 (V3) aerosol retrieval algorithm is described, which is based on the Version 2 (V2) algorithm with numerous updates. Comparisons of V3 aerosol retrievals to those of V2 are presented, along with a new approach to estimate uncertainties in many of the retrieved aerosol parameters. Changes in the V3 aerosol retrieval algorithm include (1) a new polarized radiative transfer code (RTC), which replaced the scalar RTC of V2, (2) detailed characterization of gas absorption by adding <span class="inline-formula">NO<sub>2</sub></span> and <span class="inline-formula">H<sub>2</sub>O</span> to specify total gas absorption in the atmospheric column, specification of vertical profiles of all the atmospheric species, (3) new bidirectional reflectance distribution function (BRDF) parameters for land sites adopted from the MODIS BRDF/Albedo product, (4) a new version of the extraterrestrial solar flux spectrum, and (5) a new temperature correction procedure of both direct Sun and sky radiance measurements. The potential effect of each change in V3 on single scattering albedo (SSA) retrievals was analyzed. The operational almucantar retrievals of V2 versus V3 were compared for four AERONET sites: GSFC, Mezaira, Mongu, and Kanpur. Analysis showed very good agreement in retrieved parameters of the size distributions. Comparisons of SSA retrievals for dust aerosols (Mezaira) showed a good agreement in 440&thinsp;nm SSA, while for longer wavelengths V3 SSAs are systematically higher than those of V2, with the largest mean difference at 675&thinsp;nm due to cumulative effects of both extraterrestrial solar flux and BRDF changes. For non-dust aerosols, the largest SSA deviation is at 675&thinsp;nm due to differences in extraterrestrial solar flux spectrums used in each version. Further, the SSA 675&thinsp;nm mean differences are very different for weakly (GSFC) and strongly (Mongu) absorbing aerosols, which is explained by the lower sensitivity to a bias in aerosol scattering optical depth by less absorbing aerosols. A new hybrid (HYB) sky radiance measurement scan is introduced and discussed. The HYB combines features of scans in two different planes to maximize the range of scattering angles and achieve scan symmetry, thereby allowing for cloud screening and spatial averaging, which is an advantage over the principal plane scan that lacks robust symmetry. We show that due to an extended range of scattering angles, HYB SSA retrievals for dust aerosols exhibit smaller variability with solar zenith angles (SZAs) than those of almucantar (ALM), which allows extension of HYB SSA retrievals to SZAs less than 50<span class="inline-formula"><sup>∘</sup></span> to as small as 25<span class="inline-formula"><sup>∘</sup></span>. The comparison of SSA retrievals from closely time-matched HYB and ALM scans in the 50 to 75<span class="inline-formula"><sup>∘</sup></span> SZA range showed good agreement with the differences below <span class="inline-formula">∼0.005</span>. We also present an approach to estimate retrieval uncertainties which utilizes the variability in retrieved parameters generated by perturbing both measurements and auxiliary input parameters as a proxy for retrieval uncertainty. The perturbations in measurements and auxiliary inputs are assumed as estimated biases in aerosol optical depth (AOD), radiometric calibration of sky radiances combined with solar spectral irradiance, and surface reflectance. For each set of Level 2 Sun/sky radiometer observations, 27 inputs corresponding to 27 combinations of biases were produced and separately inverted to generate the following statistics of the inversion results: average, standard deviation, minimum and maximum values. From these statistics, standard deviation (labeled U27)<span id="page3376"/> is used as a proxy for estimated uncertainty, and a lookup table (LUT) approach was implemented to reduce the computational time. The U27 climatological LUT was generated from the entire AERONET almucantar (1993–2018) and hybrid (2014–2018) scan databases by binning U27s in AOD (440&thinsp;nm), Angström exponent (AE, 440–870&thinsp;nm), and SSA (440, 675, 870, 1020&thinsp;nm). Using this LUT approach, the uncertainty estimates U27 for each individual V3 Level 2 retrieval can be obtained by interpolation using the corresponding measured and inverted combination of AOD, AE, and SSA.</p>https://www.atmos-meas-tech.net/13/3375/2020/amt-13-3375-2020.pdf