Implications of cohesive strength in asteroid interiors and surfaces and its measurement

Abstract Recent observations and theory have indicated that rubble pile asteroids may have a small, but finite, level of tensile strength, allowing them to spin above their spin deformation limit as defined in Holsapple (Icarus 205:430–442, 2010). In Sánchez and Scheeres (Meteorit Planet Sci 49:788–...

Full description

Bibliographic Details
Main Authors: Daniel J. Scheeres, Paul Sánchez
Format: Article
Language:English
Published: SpringerOpen 2018-05-01
Series:Progress in Earth and Planetary Science
Subjects:
Online Access:http://link.springer.com/article/10.1186/s40645-018-0182-9
Description
Summary:Abstract Recent observations and theory have indicated that rubble pile asteroids may have a small, but finite, level of tensile strength, allowing them to spin above their spin deformation limit as defined in Holsapple (Icarus 205:430–442, 2010). In Sánchez and Scheeres (Meteorit Planet Sci 49:788–811, 2014), a theory for how such strength could be present in rubble pile asteroids was presented, relying on weak van der Waals forces between fine particulate material in asteroid regolith and in their interiors. The implications of this theory are evaluated and related to the surface strength of regolith and global strength of a rubble pile body. Proposed techniques to measure the strength of regolith using cratering theory are reviewed, as are constraints placed on the global strength of rubble pile asteroids from astronomical observations. Specific examples applied to the Hayabusa2 cratering experiment at its target asteroid are given.
ISSN:2197-4284