Summary: | This paper introduces an upper bound on the absolute difference between: (a) the cumulative distribution function (CDF) of the sum of a finite number of independent and identically distributed random variables with finite absolute third moment; and (b) a saddlepoint approximation of such CDF. This upper bound, which is particularly precise in the regime of large deviations, is used<br />to study the dependence testing (DT) bound and the meta converse (MC) bound on the decoding error probability (DEP) in point-to-point memoryless channels. Often, these bounds cannot be analytically calculated and thus lower and upper bounds become particularly useful. Within this context, the main<br />results include, respectively, new upper and lower bounds on the DT and MC bounds. A numerical experimentation of these bounds is presented in the case of the binary symmetric channel, the additive white Gaussian noise channel, and the additive symmetric a-stable noise channel.
|