Optimization, characterization and evaluation of ZnO/polyvinylidene fluoride nanocomposites for orthopedic applications: improved antibacterial ability and promoted osteoblast growth

Herein, electrospun zinc oxide nanoparticle/poly (vinylidene fluoride) (ZnONP/PVDF) composite fiber membranes were designed, fabricated, and tested for improved orthopedic applications. A single factor screening study was conducted to determine the optimal ZnONP/PVDF formulation based on osteoblast...

Full description

Bibliographic Details
Main Authors: Yanhai Xi, Wenming Pan, Dan Xi, Xue Liu, Jiangmin Yu, Mintao Xue, Ning Xu, Jiankun Wen, Weiheng Wang, Hailong He, Yanyan Liu, Yue He, Chunjing Guo, Daquan Chen, Xiaojian Ye
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Drug Delivery
Subjects:
Online Access:http://dx.doi.org/10.1080/10717544.2020.1827084
Description
Summary:Herein, electrospun zinc oxide nanoparticle/poly (vinylidene fluoride) (ZnONP/PVDF) composite fiber membranes were designed, fabricated, and tested for improved orthopedic applications. A single factor screening study was conducted to determine the optimal ZnONP/PVDF formulation based on osteoblast (bone forming cells) proliferation and antibacterial properties. Further, ZnONP/PVDF materials were characterized for their morphology, crystallinity, roughness, piezoelectric properties, and chemistry to understand such cell results. The optimal concentration of high molecular weight PVDF (18%, w/v) and a low concentration of ZnONPs (1 mg/ml) were identified for electrospinning at room temperature in order to inhibit bacterial colonization (without resorting to antibiotic use) and promote osteoblast proliferation. Compared to no ZnO/PVDF scaffold without Piezo-excited group,the study showed that on the 1 mg/ml ZnO/PVDF scaffolds with piezo-excitation, the density of SA and E.coli decreased by 68% and 56%.The density of osteoblasts doubled within three days(compared to the control). In summary, ZnONP/PVDF composite fiber membranes were formulated by electrospinning showing an exceptional ability to eliminate bacteria colonization while at the same time promote osteoblast functions and, thus, they should be further studied for a wide range of orthopedic applications.
ISSN:1071-7544
1521-0464