Hepatoprotective effect of silymarin on fructose induced nonalcoholic fatty liver disease in male albino wistar rats

Abstract Background Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the Western world, and it’s likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other components of metabolic syndrome. However, optimal treatment for N...

Full description

Bibliographic Details
Main Authors: Tewodros Mengesha, N. Gnana Sekaran, Tsegaye Mehare
Format: Article
Language:English
Published: BMC 2021-03-01
Series:BMC Complementary Medicine and Therapies
Subjects:
Online Access:https://doi.org/10.1186/s12906-021-03275-5
Description
Summary:Abstract Background Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the Western world, and it’s likely to parallel the increasing prevalence of type 2 diabetes, obesity, and other components of metabolic syndrome. However, optimal treatment for NAFLD has not been established yet. Therefore, this study investigated the hepatoprotective effect of silymarin on fructose-induced nonalcoholic fatty liver disease in rats. Methods Thirty male Wistar rats were randomly divided into five groups; normal control group that consumed tap water, silymarin control group that consumed tap water and silymarin (400 mg/kg/day), fructose control group that consumed 20% fructose solution, treatment group that consumed 20% fructose solution and silymarin (200 mg/kg/day), and another treatment group that consumed 20% fructose solution and silymarin (400 mg/kg/day). Hepatic triglyceride, serum lipid profile, lipid peroxidation, antioxidant level, morphological features, and histopathological changes were investigated. The data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey multiple comparison test. Statistical significance was determined at p < 0.05. Results This study showed that the fructose control group had a significantly high value in the stage of steatosis grade, hepatic triglyceride, serum triglyceride, total cholesterol, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and hepatic malondialdehyde concentration as compared to the normal control. However, significantly low values of reduced glutathione and plasma total antioxidant capacity were found. The altered parameters due to fructose drastic effect were ameliorated by silymarin treatment. Conclusions The fructose control group developed dyslipidemia, oxidative stress, and mild steatosis that are the characteristics features of NAFLD. However, silymarin-treated groups showed amelioration in oxidative stress, dyslipidemia, and steatosis.
ISSN:2662-7671