Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017

<p>The Minamata Convention on Mercury (Hg) entered into force in 2017, committing its 116 parties (as of January 2019) to curb anthropogenic emissions. Monitoring of atmospheric concentrations and trends is an important part of the effectiveness evaluation of the convention. A few years ago (i...

Full description

Bibliographic Details
Main Authors: F. Slemr, L. Martin, C. Labuschagne, T. Mkololo, H. Angot, O. Magand, A. Dommergue, P. Garat, M. Ramonet, J. Bieser
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/20/7683/2020/acp-20-7683-2020.pdf
id doaj-bc21561de7c8401396f3932e7d1aadba
record_format Article
spelling doaj-bc21561de7c8401396f3932e7d1aadba2020-11-25T03:15:47ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242020-07-01207683769210.5194/acp-20-7683-2020Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017F. Slemr0L. Martin1C. Labuschagne2T. Mkololo3H. Angot4O. Magand5A. Dommergue6P. Garat7M. Ramonet8J. Bieser9Atmospheric Chemistry Department, Max-Planck-Institut für Chemie (MPI), Hahn-Meitner-Weg 1, 55128 Mainz, GermanySouth African Weather Service c/o CSIR, P.O. Box 320, Stellenbosch 7599, South AfricaSouth African Weather Service c/o CSIR, P.O. Box 320, Stellenbosch 7599, South AfricaSouth African Weather Service c/o CSIR, P.O. Box 320, Stellenbosch 7599, South AfricaInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USAInstitut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, 38400 Grenoble, FranceInstitut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, 38400 Grenoble, FranceLJK, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, 38401 Grenoble, FranceLaboratoire des Sciences du Climat et de l'Environnement, LSCE-IPSL (CEA-CNRS-UVSQ), Université Paris-Saclay, 91191 Gif-sur-Yvette, FranceInstitute of Coastal Research, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1, 21502 Geesthacht, Germany<p>The Minamata Convention on Mercury (Hg) entered into force in 2017, committing its 116 parties (as of January 2019) to curb anthropogenic emissions. Monitoring of atmospheric concentrations and trends is an important part of the effectiveness evaluation of the convention. A few years ago (in 2017) we reported an increasing trend in atmospheric Hg concentrations at the Cape Point Global Atmosphere Watch (GAW) station in South Africa (34.3535<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 18.4897<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) for the 2007–2015 period. With 2 more years of measurements at Cape Point and the 2012–2017 data from Amsterdam Island (37.7983<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 77.5378<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) in the remote southern Indian Ocean, a more complex picture emerges: at Cape Point the upward trend for the 2007–2017 period is still significant, but no trend or a slightly downward trend was detected for the period 2012–2017 at both Cape Point and Amsterdam Island. The upward trend at Cape Point is driven mainly by the Hg concentration minimum in 2009 and maxima in 2014 and 2012. Using ancillary data on <span class="inline-formula"><sup>222</sup>Rn</span>, CO, <span class="inline-formula">O<sub>3</sub></span>, <span class="inline-formula">CO<sub>2</sub></span>, and <span class="inline-formula">CH<sub>4</sub></span> from Cape Point and Amsterdam Island, the possible reasons for the trend and its change are investigated. In a companion paper this analysis is extended for the Cape Point station by calculations of source and sink regions using backward-trajectory analysis.</p>https://www.atmos-chem-phys.net/20/7683/2020/acp-20-7683-2020.pdf
collection DOAJ
language English
format Article
sources DOAJ
author F. Slemr
L. Martin
C. Labuschagne
T. Mkololo
H. Angot
O. Magand
A. Dommergue
P. Garat
M. Ramonet
J. Bieser
spellingShingle F. Slemr
L. Martin
C. Labuschagne
T. Mkololo
H. Angot
O. Magand
A. Dommergue
P. Garat
M. Ramonet
J. Bieser
Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
Atmospheric Chemistry and Physics
author_facet F. Slemr
L. Martin
C. Labuschagne
T. Mkololo
H. Angot
O. Magand
A. Dommergue
P. Garat
M. Ramonet
J. Bieser
author_sort F. Slemr
title Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
title_short Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
title_full Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
title_fullStr Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
title_full_unstemmed Atmospheric mercury in the Southern Hemisphere – Part 1: Trend and inter-annual variations in atmospheric mercury at Cape Point, South Africa, in 2007–2017, and on Amsterdam Island in 2012–2017
title_sort atmospheric mercury in the southern hemisphere – part 1: trend and inter-annual variations in atmospheric mercury at cape point, south africa, in 2007–2017, and on amsterdam island in 2012–2017
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2020-07-01
description <p>The Minamata Convention on Mercury (Hg) entered into force in 2017, committing its 116 parties (as of January 2019) to curb anthropogenic emissions. Monitoring of atmospheric concentrations and trends is an important part of the effectiveness evaluation of the convention. A few years ago (in 2017) we reported an increasing trend in atmospheric Hg concentrations at the Cape Point Global Atmosphere Watch (GAW) station in South Africa (34.3535<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 18.4897<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) for the 2007–2015 period. With 2 more years of measurements at Cape Point and the 2012–2017 data from Amsterdam Island (37.7983<span class="inline-formula"><sup>∘</sup></span>&thinsp;S, 77.5378<span class="inline-formula"><sup>∘</sup></span>&thinsp;E) in the remote southern Indian Ocean, a more complex picture emerges: at Cape Point the upward trend for the 2007–2017 period is still significant, but no trend or a slightly downward trend was detected for the period 2012–2017 at both Cape Point and Amsterdam Island. The upward trend at Cape Point is driven mainly by the Hg concentration minimum in 2009 and maxima in 2014 and 2012. Using ancillary data on <span class="inline-formula"><sup>222</sup>Rn</span>, CO, <span class="inline-formula">O<sub>3</sub></span>, <span class="inline-formula">CO<sub>2</sub></span>, and <span class="inline-formula">CH<sub>4</sub></span> from Cape Point and Amsterdam Island, the possible reasons for the trend and its change are investigated. In a companion paper this analysis is extended for the Cape Point station by calculations of source and sink regions using backward-trajectory analysis.</p>
url https://www.atmos-chem-phys.net/20/7683/2020/acp-20-7683-2020.pdf
work_keys_str_mv AT fslemr atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT lmartin atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT clabuschagne atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT tmkololo atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT hangot atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT omagand atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT adommergue atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT pgarat atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT mramonet atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
AT jbieser atmosphericmercuryinthesouthernhemispherepart1trendandinterannualvariationsinatmosphericmercuryatcapepointsouthafricain20072017andonamsterdamislandin20122017
_version_ 1724637594219708416