miR-892b Inhibits Hypertrophy by Targeting KLF10 in the Chondrogenesis of Mesenchymal Stem Cells

We investigated the functional role of miR-892b as a novel inhibitor of chondrocyte hypertrophy during TGF-β-mediated chondrogenesis of human mesenchymal stem cells (hMSCs). The expression of miR-892b during TGF-β-mediated chondrogenesis of hMSCs and the effects of miR-892b overexpression on chondro...

Full description

Bibliographic Details
Main Authors: Jong Min Lee, Ji-Yun Ko, Hye Young Kim, Jeong-Won Park, Farshid Guilak, Gun-Il Im
Format: Article
Language:English
Published: Elsevier 2019-09-01
Series:Molecular Therapy: Nucleic Acids
Online Access:http://www.sciencedirect.com/science/article/pii/S2162253119301623
Description
Summary:We investigated the functional role of miR-892b as a novel inhibitor of chondrocyte hypertrophy during TGF-β-mediated chondrogenesis of human mesenchymal stem cells (hMSCs). The expression of miR-892b during TGF-β-mediated chondrogenesis of hMSCs and the effects of miR-892b overexpression on chondrogenic and hypertrophic marker genes in the chondrogenesis of hMSCs were investigated. Targets of miR-892b were identified and verified by overexpression of synthetic miRNA mimics and luciferase assays. Cross-talk between Kruppel-like factor 10 (KLF10) and Indian hedgehog (Ihh) was investigated using KLF10 knockdown (KD). miR-892b enhanced chondrogenic makers and suppressed hypertrophy in hMSC chondrogenesis, mimicking parathyroid hormone-related peptide (PTHrP). KLF10, a transcription factor and miR-892b target, directly regulated Ihh promoter activity. Like miR-892b, KLF10 KD enhanced hMSC chondrogenesis and inhibited hypertrophy. Our findings suggest a key role of miR-892b in targeting the KLF10-Ihh axis as a regulator of hypertrophy in TGF-β-mediated chondrogenesis of hMSCs and provide a novel strategy for preventing hypertrophy in chondrogenesis from MSCs. Keywords: chondrogenesis, mesenchymal stem cells, hypertrophy, miR-892b, KLF10
ISSN:2162-2531