Existence of infinitely many solutions of p-Laplacian equations in R^N+

In this article, we study the p-Laplacian equation $$\displaylines{ -\Delta_p u=0, \quad \text{in } \mathbb{R}^N_{+},\cr |\nabla u|^{p-2}\frac{\partial u}{\partial n}+a(y)|u|^{p-2}u=|u|^{q-2}u , \quad \text{on } \partial\mathbb{R}^N_{+}=\mathbb{R}^{N-1}, }$$ where $1<p<N$, $p<q<\b...

Full description

Bibliographic Details
Main Authors: Junfang Zhao, Xiangqing Liu, Jiaquan Liu
Format: Article
Language:English
Published: Texas State University 2019-07-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2019/87/abstr.html
id doaj-bcb26434e89847b09d3a02f57dc7832b
record_format Article
spelling doaj-bcb26434e89847b09d3a02f57dc7832b2020-11-24T21:30:54ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912019-07-01201987,120Existence of infinitely many solutions of p-Laplacian equations in R^N+Junfang Zhao0Xiangqing Liu1Jiaquan Liu2 China Univ. of Geosciences, Beijing, China Yunnan Normal Univ., Kunming, China Peking Univ., Beijing, China In this article, we study the p-Laplacian equation $$\displaylines{ -\Delta_p u=0, \quad \text{in } \mathbb{R}^N_{+},\cr |\nabla u|^{p-2}\frac{\partial u}{\partial n}+a(y)|u|^{p-2}u=|u|^{q-2}u , \quad \text{on } \partial\mathbb{R}^N_{+}=\mathbb{R}^{N-1}, }$$ where $1<p<N$, $p<q<\bar{p}=\frac{(N-1)p}{N-p}$, $\Delta_p=$div$(|\nabla u|^{p-2}\nabla u)$ the p-Laplacian operator, and the positive, finite function a(y) satisfies suitable decay assumptions at infinity. By using the truncation method, we prove the existence of infinitely many solutions.http://ejde.math.txstate.edu/Volumes/2019/87/abstr.htmlp-Lalacian equationhalf spaceboundary value problemmultiple solutionstruncation method
collection DOAJ
language English
format Article
sources DOAJ
author Junfang Zhao
Xiangqing Liu
Jiaquan Liu
spellingShingle Junfang Zhao
Xiangqing Liu
Jiaquan Liu
Existence of infinitely many solutions of p-Laplacian equations in R^N+
Electronic Journal of Differential Equations
p-Lalacian equation
half space
boundary value problem
multiple solutions
truncation method
author_facet Junfang Zhao
Xiangqing Liu
Jiaquan Liu
author_sort Junfang Zhao
title Existence of infinitely many solutions of p-Laplacian equations in R^N+
title_short Existence of infinitely many solutions of p-Laplacian equations in R^N+
title_full Existence of infinitely many solutions of p-Laplacian equations in R^N+
title_fullStr Existence of infinitely many solutions of p-Laplacian equations in R^N+
title_full_unstemmed Existence of infinitely many solutions of p-Laplacian equations in R^N+
title_sort existence of infinitely many solutions of p-laplacian equations in r^n+
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2019-07-01
description In this article, we study the p-Laplacian equation $$\displaylines{ -\Delta_p u=0, \quad \text{in } \mathbb{R}^N_{+},\cr |\nabla u|^{p-2}\frac{\partial u}{\partial n}+a(y)|u|^{p-2}u=|u|^{q-2}u , \quad \text{on } \partial\mathbb{R}^N_{+}=\mathbb{R}^{N-1}, }$$ where $1<p<N$, $p<q<\bar{p}=\frac{(N-1)p}{N-p}$, $\Delta_p=$div$(|\nabla u|^{p-2}\nabla u)$ the p-Laplacian operator, and the positive, finite function a(y) satisfies suitable decay assumptions at infinity. By using the truncation method, we prove the existence of infinitely many solutions.
topic p-Lalacian equation
half space
boundary value problem
multiple solutions
truncation method
url http://ejde.math.txstate.edu/Volumes/2019/87/abstr.html
work_keys_str_mv AT junfangzhao existenceofinfinitelymanysolutionsofplaplacianequationsinrn
AT xiangqingliu existenceofinfinitelymanysolutionsofplaplacianequationsinrn
AT jiaquanliu existenceofinfinitelymanysolutionsofplaplacianequationsinrn
_version_ 1725961126532874240