Bell-state tomography in a silicon many-electron artificial molecule

Multielectron quantum dots offer a promising platform for high-performance spin qubits; however, previous demonstrations have been limited to single-qubit operation. Here, the authors report a universal gate set and two-qubit Bell state tomography in a high-occupancy double quantum dot in silicon.

Bibliographic Details
Main Authors: Ross C. C. Leon, Chih Hwan Yang, Jason C. C. Hwang, Julien Camirand Lemyre, Tuomo Tanttu, Wei Huang, Jonathan Y. Huang, Fay E. Hudson, Kohei M. Itoh, Arne Laucht, Michel Pioro-Ladrière, Andre Saraiva, Andrew S. Dzurak
Format: Article
Language:English
Published: Nature Publishing Group 2021-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-021-23437-w
id doaj-bcc6602230604d6aba9fffb42a4b6ae3
record_format Article
spelling doaj-bcc6602230604d6aba9fffb42a4b6ae32021-05-30T11:14:20ZengNature Publishing GroupNature Communications2041-17232021-05-011211610.1038/s41467-021-23437-wBell-state tomography in a silicon many-electron artificial moleculeRoss C. C. Leon0Chih Hwan Yang1Jason C. C. Hwang2Julien Camirand Lemyre3Tuomo Tanttu4Wei Huang5Jonathan Y. Huang6Fay E. Hudson7Kohei M. Itoh8Arne Laucht9Michel Pioro-Ladrière10Andre Saraiva11Andrew S. Dzurak12School of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Electrical Engineering and Telecommunications, The University of New South WalesInstitut Quantique et Département de Physique, Université de SherbrookeSchool of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Fundamental Science and Technology, Keio UniversitySchool of Electrical Engineering and Telecommunications, The University of New South WalesInstitut Quantique et Département de Physique, Université de SherbrookeSchool of Electrical Engineering and Telecommunications, The University of New South WalesSchool of Electrical Engineering and Telecommunications, The University of New South WalesMultielectron quantum dots offer a promising platform for high-performance spin qubits; however, previous demonstrations have been limited to single-qubit operation. Here, the authors report a universal gate set and two-qubit Bell state tomography in a high-occupancy double quantum dot in silicon.https://doi.org/10.1038/s41467-021-23437-w
collection DOAJ
language English
format Article
sources DOAJ
author Ross C. C. Leon
Chih Hwan Yang
Jason C. C. Hwang
Julien Camirand Lemyre
Tuomo Tanttu
Wei Huang
Jonathan Y. Huang
Fay E. Hudson
Kohei M. Itoh
Arne Laucht
Michel Pioro-Ladrière
Andre Saraiva
Andrew S. Dzurak
spellingShingle Ross C. C. Leon
Chih Hwan Yang
Jason C. C. Hwang
Julien Camirand Lemyre
Tuomo Tanttu
Wei Huang
Jonathan Y. Huang
Fay E. Hudson
Kohei M. Itoh
Arne Laucht
Michel Pioro-Ladrière
Andre Saraiva
Andrew S. Dzurak
Bell-state tomography in a silicon many-electron artificial molecule
Nature Communications
author_facet Ross C. C. Leon
Chih Hwan Yang
Jason C. C. Hwang
Julien Camirand Lemyre
Tuomo Tanttu
Wei Huang
Jonathan Y. Huang
Fay E. Hudson
Kohei M. Itoh
Arne Laucht
Michel Pioro-Ladrière
Andre Saraiva
Andrew S. Dzurak
author_sort Ross C. C. Leon
title Bell-state tomography in a silicon many-electron artificial molecule
title_short Bell-state tomography in a silicon many-electron artificial molecule
title_full Bell-state tomography in a silicon many-electron artificial molecule
title_fullStr Bell-state tomography in a silicon many-electron artificial molecule
title_full_unstemmed Bell-state tomography in a silicon many-electron artificial molecule
title_sort bell-state tomography in a silicon many-electron artificial molecule
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2021-05-01
description Multielectron quantum dots offer a promising platform for high-performance spin qubits; however, previous demonstrations have been limited to single-qubit operation. Here, the authors report a universal gate set and two-qubit Bell state tomography in a high-occupancy double quantum dot in silicon.
url https://doi.org/10.1038/s41467-021-23437-w
work_keys_str_mv AT rossccleon bellstatetomographyinasiliconmanyelectronartificialmolecule
AT chihhwanyang bellstatetomographyinasiliconmanyelectronartificialmolecule
AT jasoncchwang bellstatetomographyinasiliconmanyelectronartificialmolecule
AT juliencamirandlemyre bellstatetomographyinasiliconmanyelectronartificialmolecule
AT tuomotanttu bellstatetomographyinasiliconmanyelectronartificialmolecule
AT weihuang bellstatetomographyinasiliconmanyelectronartificialmolecule
AT jonathanyhuang bellstatetomographyinasiliconmanyelectronartificialmolecule
AT fayehudson bellstatetomographyinasiliconmanyelectronartificialmolecule
AT koheimitoh bellstatetomographyinasiliconmanyelectronartificialmolecule
AT arnelaucht bellstatetomographyinasiliconmanyelectronartificialmolecule
AT michelpioroladriere bellstatetomographyinasiliconmanyelectronartificialmolecule
AT andresaraiva bellstatetomographyinasiliconmanyelectronartificialmolecule
AT andrewsdzurak bellstatetomographyinasiliconmanyelectronartificialmolecule
_version_ 1721420640054935552