Three-Phase Five-Level Cascade Quasi-Switched Boost Inverter

This paper presents a three-phase cascaded five-level H-bridge quasi-switched boost inverter (CHB-qSBI). The merits of the CHB-qSBI are as follows: single-stage conversion, shoot-through immunity, buck-boost voltage, and reduced passive components. Furthermore, a PWM control method is applied to the...

Full description

Bibliographic Details
Main Authors: Van-Thuan Tran, Minh-Khai Nguyen, Cao-Cuong Ngo, Youn-Ok Choi
Format: Article
Language:English
Published: MDPI AG 2019-03-01
Series:Electronics
Subjects:
Online Access:http://www.mdpi.com/2079-9292/8/3/296
Description
Summary:This paper presents a three-phase cascaded five-level H-bridge quasi-switched boost inverter (CHB-qSBI). The merits of the CHB-qSBI are as follows: single-stage conversion, shoot-through immunity, buck-boost voltage, and reduced passive components. Furthermore, a PWM control method is applied to the CHB-qSBI topology to improve the modulation index. The voltage stress across power semiconductor devices and the capacitor are significantly lower using improved pulse-width modulation (PWM) control. Additionally, by controlling individual shoot-through duty cycle, the DC-link voltage of each module can achieve the same values. As a result, the imbalance problem of the DC-link voltage can be solved. A detailed analysis and operating principle with the modulation scheme and comprehensive comparison for the CHB-qSBI are illustrated. The experimental and simulation results are presented to validate the operating principle of the three-phase CHB-qSBI.
ISSN:2079-9292