Deep Hierarchical Representation from Classifying Logo-405
We introduce a logo classification mechanism which combines a series of deep representations obtained by fine-tuning convolutional neural network (CNN) architectures and traditional pattern recognition algorithms. In order to evaluate the proposed mechanism, we build a middle-scale logo dataset (nam...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi-Wiley
2017-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2017/3169149 |
Summary: | We introduce a logo classification mechanism which combines a series of deep representations obtained by fine-tuning convolutional neural network (CNN) architectures and traditional pattern recognition algorithms. In order to evaluate the proposed mechanism, we build a middle-scale logo dataset (named Logo-405) and treat it as a benchmark for logo related research. Our experiments are carried out on both the Logo-405 dataset and the publicly available FlickrLogos-32 dataset. The experimental results demonstrate that the proposed mechanism outperforms two popular ways used for logo classification, including the strategies that integrate hand-crafted features and traditional pattern recognition algorithms and the models which employ deep CNNs. |
---|---|
ISSN: | 1076-2787 1099-0526 |