Deformation Analysis of Large-Scale Rock Slopes Considering the Effect of Microseismic Events
To research the macroscopic deformation of rock microseismic damage, a high-precision microseismic monitoring system was established on the left bank slope of the Baihetan hydropower station in Southwestern China. Based on the microseismic monitoring and field deformation data, the seismic source ra...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-08-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/9/16/3409 |
Summary: | To research the macroscopic deformation of rock microseismic damage, a high-precision microseismic monitoring system was established on the left bank slope of the Baihetan hydropower station in Southwestern China. Based on the microseismic monitoring and field deformation data, the seismic source radius was applied to characterize the rock fracture scale. Numerical simulations introduced the rock micro-fracture information into the three-dimensional numerical model of the left bank slope and established the damage constitutive model. The unloading deformation process of the left bank abutment rock mass is described by numerical calculations. The feedback analysis method considering the effect of microseismic damage is preliminary exploratory research, which provides a new idea for the stability analysis of similar high rock slopes. |
---|---|
ISSN: | 2076-3417 |