Robust Fixed-Time Inverse Dynamic Control for Uncertain Robot Manipulator System

This paper proposes a novel robust fixed-time control for the robot manipulator system with uncertainties. Based on the uniform robust exact differentiator (URED) algorithm, a robust control term is constructed. Then, a robust fixed-time inverse dynamics control (IDC) is proposed. For the proposed c...

Full description

Bibliographic Details
Main Authors: Yang Wang, Mingshu Chen, Yu Song
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/6664750
Description
Summary:This paper proposes a novel robust fixed-time control for the robot manipulator system with uncertainties. Based on the uniform robust exact differentiator (URED) algorithm, a robust control term is constructed. Then, a robust fixed-time inverse dynamics control (IDC) is proposed. For the proposed control method, the fixed-time stability of a closed-loop system with uncertainties is strictly proved. The newly proposed method exhibits the following two attractive features. First, the proposed control scheme extends the existing fixed-time IDC for the robot manipulator system to the robust control scheme. Second, the proposed method is strictly nonsingular rather than the commonly used approximate approach. Simulation result demonstrates the effectiveness of the proposed control scheme.
ISSN:1076-2787
1099-0526