MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE

The classification model which consists of the motion detector, object tracker, convolutional sparse coded feature extractor and stacked information-extreme classifier is developed. It is proposed to build a motion detector based on the difference of consecutive aligned frames where alignment is per...

Full description

Bibliographic Details
Main Authors: В’ячеслав Васильович Москаленко, Микола Олександрович Зарецький, Альона Сергіївна Москаленко
Format: Article
Language:English
Published: National Aerospace University «Kharkiv Aviation Institute» 2019-06-01
Series:Радіоелектронні і комп'ютерні системи
Subjects:
Online Access:http://nti.khai.edu/ojs/index.php/reks/article/view/765
id doaj-be47c45d181c4c929d4d4b45d531dff6
record_format Article
spelling doaj-be47c45d181c4c929d4d4b45d531dff62020-11-25T02:52:32ZengNational Aerospace University «Kharkiv Aviation Institute»Радіоелектронні і комп'ютерні системи1814-42252663-20122019-06-010210811710.32620/reks.2019.2.10808MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONEВ’ячеслав Васильович Москаленко0Микола Олександрович Зарецький1Альона Сергіївна Москаленко2Сумський державний університет, СумиСумський державний університет, СумиСумський державний університет, СумиThe classification model which consists of the motion detector, object tracker, convolutional sparse coded feature extractor and stacked information-extreme classifier is developed. It is proposed to build a motion detector based on the difference of consecutive aligned frames where alignment is performed via keypoints matching, homography estimation, and projective transformations. Motion detector seeks to simplify object classification task through reduction of input data variations and resource savings for motion region search model synthesis without training. The proposed model is characterized by low computational complexity and it can be used as labeling dataset gathering tool for deep moveable object detector. Furthermore, the training method for moving object detector is developed. The method consisting in unsupervised pretraining feature extractor based on sparse coding neural gas, supervised pretraining and following fine-tuning of stacked information-extreme classifier. Using soft-competitive learning scheme in sparse coding neural gas facilitates robust convergence to close to optimal distributions of the neurons over the data. Sparse coding neural gas reduces the requirements for the volume of labeled observations and computational resource. As a criterion for the effectiveness of classifier's machine training, the normalized modification of S. Kullback’s information measure is considered. Labeling new emerging data through self-labeling for high prediction score cases and manual labeling for low prediction score cases, and following labeled object tracking are also offered. In this case, class balancing using undersampling within dichotomous strategy “one-against-all”. The set of classes include bicycle, bus, car, motorcycle, pickup truck, articulated truck, and background. Simulation results on MIO-TCD dataset confirm the suitability of the proposed model and training method for practical usage.http://nti.khai.edu/ojs/index.php/reks/article/view/765класифікаціявідстеження рухудетектування об’єктівзгорткова нейронна мережарозріджено кодуючий нейронний газінформаційно-екстремальне навчанняактивне навчання
collection DOAJ
language English
format Article
sources DOAJ
author В’ячеслав Васильович Москаленко
Микола Олександрович Зарецький
Альона Сергіївна Москаленко
spellingShingle В’ячеслав Васильович Москаленко
Микола Олександрович Зарецький
Альона Сергіївна Москаленко
MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE
Радіоелектронні і комп'ютерні системи
класифікація
відстеження руху
детектування об’єктів
згорткова нейронна мережа
розріджено кодуючий нейронний газ
інформаційно-екстремальне навчання
активне навчання
author_facet В’ячеслав Васильович Москаленко
Микола Олександрович Зарецький
Альона Сергіївна Москаленко
author_sort В’ячеслав Васильович Москаленко
title MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE
title_short MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE
title_full MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE
title_fullStr MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE
title_full_unstemmed MODEL AND TRAINING METHOD OF MOVING OBJECT CLASSIFICATION SYSTEM FOR A COMPACT DRONE
title_sort model and training method of moving object classification system for a compact drone
publisher National Aerospace University «Kharkiv Aviation Institute»
series Радіоелектронні і комп'ютерні системи
issn 1814-4225
2663-2012
publishDate 2019-06-01
description The classification model which consists of the motion detector, object tracker, convolutional sparse coded feature extractor and stacked information-extreme classifier is developed. It is proposed to build a motion detector based on the difference of consecutive aligned frames where alignment is performed via keypoints matching, homography estimation, and projective transformations. Motion detector seeks to simplify object classification task through reduction of input data variations and resource savings for motion region search model synthesis without training. The proposed model is characterized by low computational complexity and it can be used as labeling dataset gathering tool for deep moveable object detector. Furthermore, the training method for moving object detector is developed. The method consisting in unsupervised pretraining feature extractor based on sparse coding neural gas, supervised pretraining and following fine-tuning of stacked information-extreme classifier. Using soft-competitive learning scheme in sparse coding neural gas facilitates robust convergence to close to optimal distributions of the neurons over the data. Sparse coding neural gas reduces the requirements for the volume of labeled observations and computational resource. As a criterion for the effectiveness of classifier's machine training, the normalized modification of S. Kullback’s information measure is considered. Labeling new emerging data through self-labeling for high prediction score cases and manual labeling for low prediction score cases, and following labeled object tracking are also offered. In this case, class balancing using undersampling within dichotomous strategy “one-against-all”. The set of classes include bicycle, bus, car, motorcycle, pickup truck, articulated truck, and background. Simulation results on MIO-TCD dataset confirm the suitability of the proposed model and training method for practical usage.
topic класифікація
відстеження руху
детектування об’єктів
згорткова нейронна мережа
розріджено кодуючий нейронний газ
інформаційно-екстремальне навчання
активне навчання
url http://nti.khai.edu/ojs/index.php/reks/article/view/765
work_keys_str_mv AT vâčeslavvasilʹovičmoskalenko modelandtrainingmethodofmovingobjectclassificationsystemforacompactdrone
AT mikolaoleksandrovičzarecʹkij modelandtrainingmethodofmovingobjectclassificationsystemforacompactdrone
AT alʹonasergíívnamoskalenko modelandtrainingmethodofmovingobjectclassificationsystemforacompactdrone
_version_ 1724729303581589504