Reduced Graphene Oxide Sheets as Inhibitors of the Photochemical Reactions of α-Lipoic Acid in the Presence of Ag and Au Nanoparticles

The influence of Ag and Au nanoparticles and reduced graphene oxide (RGO) sheets on the photodegradation of α-lipoic acid (ALA) was determined by UV-VIS spectroscopy. The ALA photodegradation was explained by considering the affinity of thiol groups for the metallic nanoparticles synthesized in the...

Full description

Bibliographic Details
Main Authors: N’ghaya Toulbe, Malvina S. Stroe, Monica Daescu, Radu Cercel, Alin Mogos, Daniela Dragoman, Marcela Socol, Ionel Mercioniu, Mihaela Baibarac
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/10/11/2238
Description
Summary:The influence of Ag and Au nanoparticles and reduced graphene oxide (RGO) sheets on the photodegradation of α-lipoic acid (ALA) was determined by UV-VIS spectroscopy. The ALA photodegradation was explained by considering the affinity of thiol groups for the metallic nanoparticles synthesized in the presence of trisodium citrate. The presence of excipients did not induce further changes when ALA interacts with Ag and Au nanoparticles with sizes of 5 and 10 nm by exposure to UV light. Compared to the Raman spectrum of ALA powder, changes in Raman lines’ position and relative intensities when ALA has interacted with films obtained from Au nanoparticles with sizes between 5 and 50 nm were significant. These changes were explained by considering the chemical mechanism of surface-enhanced Raman scattering (SERS) spectroscopy. The photodegradation of ALA that had interacted with metallic nanoparticles was inhibited in the presence of RGO sheets.
ISSN:2079-4991