Caracterización de flujos de datos usando algoritmos de agrupamiento
This paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most application...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad Distrital Francisco Jose de Caldas
2013-09-01
|
Series: | Tecnura |
Subjects: | |
Online Access: | http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569 |
id |
doaj-be893dd2b60c43cca7f969cf3f4ab9a5 |
---|---|
record_format |
Article |
spelling |
doaj-be893dd2b60c43cca7f969cf3f4ab9a52020-11-25T00:09:26ZspaUniversidad Distrital Francisco Jose de CaldasTecnura0123-921X2248-76382013-09-011737153166Caracterización de flujos de datos usando algoritmos de agrupamientoFabián Andrés GiraldoElizabeth LeónJonatan GómezThis paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most applications separate the process into two phases; namely an online phase, which makes a data stream summarization in addition to the application of decay functions regardless of the data, and an offline phase, which is the application of traditional clustering techniques in order to obtain the cluster requested by users.The net result of this paper is a selection of desirable characteristics of an algorithm, based on the theoretical underpinnings of each of the works analyzed.http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569clustering methodsdata streamdata mining |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Fabián Andrés Giraldo Elizabeth León Jonatan Gómez |
spellingShingle |
Fabián Andrés Giraldo Elizabeth León Jonatan Gómez Caracterización de flujos de datos usando algoritmos de agrupamiento Tecnura clustering methods data stream data mining |
author_facet |
Fabián Andrés Giraldo Elizabeth León Jonatan Gómez |
author_sort |
Fabián Andrés Giraldo |
title |
Caracterización de flujos de datos usando algoritmos de agrupamiento |
title_short |
Caracterización de flujos de datos usando algoritmos de agrupamiento |
title_full |
Caracterización de flujos de datos usando algoritmos de agrupamiento |
title_fullStr |
Caracterización de flujos de datos usando algoritmos de agrupamiento |
title_full_unstemmed |
Caracterización de flujos de datos usando algoritmos de agrupamiento |
title_sort |
caracterización de flujos de datos usando algoritmos de agrupamiento |
publisher |
Universidad Distrital Francisco Jose de Caldas |
series |
Tecnura |
issn |
0123-921X 2248-7638 |
publishDate |
2013-09-01 |
description |
This paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most applications separate the process into two phases; namely an online phase, which makes a data stream summarization in addition to the application of decay functions regardless of the data, and an offline phase, which is the application of traditional clustering techniques in order to obtain the cluster requested by users.The net result of this paper is a selection of desirable characteristics of an algorithm, based on the theoretical underpinnings of each of the works analyzed. |
topic |
clustering methods data stream data mining |
url |
http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569 |
work_keys_str_mv |
AT fabianandresgiraldo caracterizaciondeflujosdedatosusandoalgoritmosdeagrupamiento AT elizabethleon caracterizaciondeflujosdedatosusandoalgoritmosdeagrupamiento AT jonatangomez caracterizaciondeflujosdedatosusandoalgoritmosdeagrupamiento |
_version_ |
1725411904072974336 |