Caracterización de flujos de datos usando algoritmos de agrupamiento

This paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most application...

Full description

Bibliographic Details
Main Authors: Fabián Andrés Giraldo, Elizabeth León, Jonatan Gómez
Format: Article
Language:Spanish
Published: Universidad Distrital Francisco Jose de Caldas 2013-09-01
Series:Tecnura
Subjects:
Online Access:http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569
id doaj-be893dd2b60c43cca7f969cf3f4ab9a5
record_format Article
spelling doaj-be893dd2b60c43cca7f969cf3f4ab9a52020-11-25T00:09:26ZspaUniversidad Distrital Francisco Jose de CaldasTecnura0123-921X2248-76382013-09-011737153166Caracterización de flujos de datos usando algoritmos de agrupamientoFabián Andrés GiraldoElizabeth LeónJonatan GómezThis paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most applications separate the process into two phases; namely an online phase, which makes a data stream summarization in addition to the application of decay functions regardless of the data, and an offline phase, which is the application of traditional clustering techniques in order to obtain the cluster requested by users.The net result of this paper is a selection of desirable characteristics of an algorithm, based on the theoretical underpinnings of each of the works analyzed.http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569clustering methodsdata streamdata mining
collection DOAJ
language Spanish
format Article
sources DOAJ
author Fabián Andrés Giraldo
Elizabeth León
Jonatan Gómez
spellingShingle Fabián Andrés Giraldo
Elizabeth León
Jonatan Gómez
Caracterización de flujos de datos usando algoritmos de agrupamiento
Tecnura
clustering methods
data stream
data mining
author_facet Fabián Andrés Giraldo
Elizabeth León
Jonatan Gómez
author_sort Fabián Andrés Giraldo
title Caracterización de flujos de datos usando algoritmos de agrupamiento
title_short Caracterización de flujos de datos usando algoritmos de agrupamiento
title_full Caracterización de flujos de datos usando algoritmos de agrupamiento
title_fullStr Caracterización de flujos de datos usando algoritmos de agrupamiento
title_full_unstemmed Caracterización de flujos de datos usando algoritmos de agrupamiento
title_sort caracterización de flujos de datos usando algoritmos de agrupamiento
publisher Universidad Distrital Francisco Jose de Caldas
series Tecnura
issn 0123-921X
2248-7638
publishDate 2013-09-01
description This paper presents introductory materials to data-stream mining processes using clustering techniques. The limitations of traditional techniques are observed and the various approaches found in the literature are explained. The major trends in the different algorithms indicate that most applications separate the process into two phases; namely an online phase, which makes a data stream summarization in addition to the application of decay functions regardless of the data, and an offline phase, which is the application of traditional clustering techniques in order to obtain the cluster requested by users.The net result of this paper is a selection of desirable characteristics of an algorithm, based on the theoretical underpinnings of each of the works analyzed.
topic clustering methods
data stream
data mining
url http://tecnura.udistrital.edu.co/ojs/index.php/revista/article/view/635/569
work_keys_str_mv AT fabianandresgiraldo caracterizaciondeflujosdedatosusandoalgoritmosdeagrupamiento
AT elizabethleon caracterizaciondeflujosdedatosusandoalgoritmosdeagrupamiento
AT jonatangomez caracterizaciondeflujosdedatosusandoalgoritmosdeagrupamiento
_version_ 1725411904072974336