Crack Propagation and Fracture Process Zone (FPZ) of Wood in the Longitudinal Direction Determined Using Digital Image Correlation (DIC) Technique

As a state-of-the-art method, the digital image correlation (DIC) technique is used to capture the fracture properties of wood along the longitudinal direction, such as the crack propagation, the strain field, and the fracture process zone (FPZ). Single-edge notched (SEN) specimens made of Douglas f...

Full description

Bibliographic Details
Main Authors: Ying Yu, Weihang Zeng, Wen Liu, He Zhang, Xiaohong Wang
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/11/13/1562
Description
Summary:As a state-of-the-art method, the digital image correlation (DIC) technique is used to capture the fracture properties of wood along the longitudinal direction, such as the crack propagation, the strain field, and the fracture process zone (FPZ). Single-edge notched (SEN) specimens made of Douglas fir (<i>Pseudotsuga menziesii</i>) from Canada with different notch-to-depth ratios are tested by three-point-bending (3-p-b) experiment. The crack mouth opening displacements (CMOD) measured by the clip gauge and DIC technique agree well with each other, verifying the applicability of the DIC technique. Then, the quasi-brittle fracture process of wood is analyzed by combing the load-CMOD curve and the strain field in front of the preformed crack. Additionally, the equivalent elastic crack length is calculated using the linear superposition hypothesis. The comparison between the FPZ evolution and the equivalent elastic crack shows that specimens with higher notch-to-depth ratios have better cohesive effect and higher cracking resistance.
ISSN:2072-4292