Eccentricity of Networks with Structural Constraints
The eccentricity of a node v in a network is the maximum distance from v to any other node. In social networks, the reciprocal of eccentricity is used as a measure of the importance of a node within a network. The associated centralization measure then calculates the degree to which a network is dom...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2020-11-01
|
Series: | Discussiones Mathematicae Graph Theory |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgt.2180 |
id |
doaj-bf52ad5a06b242ab9d1564f8315f48df |
---|---|
record_format |
Article |
spelling |
doaj-bf52ad5a06b242ab9d1564f8315f48df2021-09-05T17:20:24ZengSciendoDiscussiones Mathematicae Graph Theory2083-58922020-11-014041141116210.7151/dmgt.2180dmgt.2180Eccentricity of Networks with Structural ConstraintsKrnc Matjaž0Sereni Jean-Sébastien1Škrekovski Riste2Yilma Zelealem B.3FAMNIT, University of Primorska, Koper, Faculty of Information Studies, Novo Mesto, SloveniaCentre national de la recherche scientifique (C.N.R.S.), ICube, CSTB, Strasbourg, FranceFaculty of Information Studies, Novo Mesto Faculty of Mathematics and Physics, University of Ljubljana FAMNIT, University of Primorska, Koper, SloveniaCarnegie Mellon University Qatar,Doha, QatarThe eccentricity of a node v in a network is the maximum distance from v to any other node. In social networks, the reciprocal of eccentricity is used as a measure of the importance of a node within a network. The associated centralization measure then calculates the degree to which a network is dominated by a particular node. In this work, we determine the maximum value of eccentricity centralization as well as the most centralized networks for various classes of networks including the families of bipartite networks (two-mode data) with given partition sizes and tree networks with fixed number of nodes and fixed maximum degree. To this end, we introduce and study a new way of enumerating the nodes of a tree which might be of independent interest.https://doi.org/10.7151/dmgt.2180eccentricitynetworkbipartite graphcomplex networkmaximum degreeprimary: 91d30secondary: 05c35, 68r10, 05c05 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Krnc Matjaž Sereni Jean-Sébastien Škrekovski Riste Yilma Zelealem B. |
spellingShingle |
Krnc Matjaž Sereni Jean-Sébastien Škrekovski Riste Yilma Zelealem B. Eccentricity of Networks with Structural Constraints Discussiones Mathematicae Graph Theory eccentricity network bipartite graph complex network maximum degree primary: 91d30 secondary: 05c35, 68r10, 05c05 |
author_facet |
Krnc Matjaž Sereni Jean-Sébastien Škrekovski Riste Yilma Zelealem B. |
author_sort |
Krnc Matjaž |
title |
Eccentricity of Networks with Structural Constraints |
title_short |
Eccentricity of Networks with Structural Constraints |
title_full |
Eccentricity of Networks with Structural Constraints |
title_fullStr |
Eccentricity of Networks with Structural Constraints |
title_full_unstemmed |
Eccentricity of Networks with Structural Constraints |
title_sort |
eccentricity of networks with structural constraints |
publisher |
Sciendo |
series |
Discussiones Mathematicae Graph Theory |
issn |
2083-5892 |
publishDate |
2020-11-01 |
description |
The eccentricity of a node v in a network is the maximum distance from v to any other node. In social networks, the reciprocal of eccentricity is used as a measure of the importance of a node within a network. The associated centralization measure then calculates the degree to which a network is dominated by a particular node. In this work, we determine the maximum value of eccentricity centralization as well as the most centralized networks for various classes of networks including the families of bipartite networks (two-mode data) with given partition sizes and tree networks with fixed number of nodes and fixed maximum degree. To this end, we introduce and study a new way of enumerating the nodes of a tree which might be of independent interest. |
topic |
eccentricity network bipartite graph complex network maximum degree primary: 91d30 secondary: 05c35, 68r10, 05c05 |
url |
https://doi.org/10.7151/dmgt.2180 |
work_keys_str_mv |
AT krncmatjaz eccentricityofnetworkswithstructuralconstraints AT serenijeansebastien eccentricityofnetworkswithstructuralconstraints AT skrekovskiriste eccentricityofnetworkswithstructuralconstraints AT yilmazelealemb eccentricityofnetworkswithstructuralconstraints |
_version_ |
1717786399255560192 |