A New Outer-Rotor Hybrid-Excited Flux-Switching Machine Employing the HTS Homopolar Topology

Currently, studies of flux switching machines are actively underway owing to several advantages of these machines, including their sturdy rotor structure and high output capability. This paper deals with an outer-rotor hybrid-excited flux-switching machine (FSM). The proposed machine embraces a homo...

Full description

Bibliographic Details
Main Authors: Jong Myung Kim, Jae Young Jang, Jaewon Chung, Young Jin Hwang
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/12/14/2654
Description
Summary:Currently, studies of flux switching machines are actively underway owing to several advantages of these machines, including their sturdy rotor structure and high output capability. This paper deals with an outer-rotor hybrid-excited flux-switching machine (FSM). The proposed machine embraces a homopolar structure and utilizes permanent magnets (PMs) for field excitation and a high-temperature superconducting (HTS) coil for flux regulation. The stator houses the HTS field coil, PMs, and armature windings. The outer rotor consists solely of an iron core. Thus, the machines are cost effective and can serve as a solution to the design and fabrication complexities of field current supplying and cooling systems. In this paper, the machine performance outcomes are analyzed using the 3D finite element method (FEM), and the validity of the proposed machine is verified.
ISSN:1996-1073