A Watermarking Scheme for Color Image Using Quaternion Discrete Fourier Transform and Tensor Decomposition

To protect the copyright of the color image, a color image watermarking scheme based on quaternion discrete Fourier transform (QDFT) and tensor decomposition (TD) is presented. Specifically, the cover image is partitioned into non-overlapping blocks, and then QDFT is performed on each image block. T...

Full description

Bibliographic Details
Main Authors: Li Li, Rui Bai, Jianfeng Lu, Shanqing Zhang, Ching-Chun Chang
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/11/5006
Description
Summary:To protect the copyright of the color image, a color image watermarking scheme based on quaternion discrete Fourier transform (QDFT) and tensor decomposition (TD) is presented. Specifically, the cover image is partitioned into non-overlapping blocks, and then QDFT is performed on each image block. Then, the three imaginary frequency components of QDFT are used to construct a third-order tensor. The third-order tensor is decomposed by Tucker decomposition and generates a core tensor. Finally, an improved odd–even quantization technique is employed to embed a watermark in the core tensor. Moreover, pseudo-Zernike moments and multiple output least squares support vector regression (MLS–SVR) network model are used for geometric distortion correction in the watermark extraction stage. The scheme utilizes the inherent correlations among the three RGB channels of a color image, and spreads the watermark into the three channels. The experimental results indicate that the proposed scheme has better fidelity and stronger robustness for common image-processing and geometric attacks, can effectively resist each color channel exchange attack. Compared with the existing schemes, the presented scheme achieves better performance.
ISSN:2076-3417