Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells

Various approaches have been developed to push higher the efficiency of halide perovskite solar cells. Here Alharbi et al. show that ammonium salts treatment can reduce the defect density at the perovskite surface and understand the passivation mechanism with 2D-solid state NMR.

Bibliographic Details
Main Authors: Essa A. Alharbi, Ahmed Y. Alyamani, Dominik J. Kubicki, Alexander R. Uhl, Brennan J. Walder, Anwar Q. Alanazi, Jingshan Luo, Andrés Burgos-Caminal, Abdulrahman Albadri, Hamad Albrithen, Mohammad Hayal Alotaibi, Jacques-E. Moser, Shaik M. Zakeeruddin, Fabrizio Giordano, Lyndon Emsley, Michael Grätzel
Format: Article
Language:English
Published: Nature Publishing Group 2019-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-10985-5
id doaj-c0bfcbe35a5b4786a127e38c3cc09d8d
record_format Article
spelling doaj-c0bfcbe35a5b4786a127e38c3cc09d8d2021-05-11T12:32:58ZengNature Publishing GroupNature Communications2041-17232019-07-011011910.1038/s41467-019-10985-5Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cellsEssa A. Alharbi0Ahmed Y. Alyamani1Dominik J. Kubicki2Alexander R. Uhl3Brennan J. Walder4Anwar Q. Alanazi5Jingshan Luo6Andrés Burgos-Caminal7Abdulrahman Albadri8Hamad Albrithen9Mohammad Hayal Alotaibi10Jacques-E. Moser11Shaik M. Zakeeruddin12Fabrizio Giordano13Lyndon Emsley14Michael Grätzel15Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneNational Center for Nanotechnology, King Abdulaziz City for Science and TechnologyLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausannePhotochemical Dynamics Group, Institute of Chemical Sciences and Engineering, Lausanne Centre for Ultrafast Science, École polytechnique fédérale de LausanneNational Center for Nanotechnology, King Abdulaziz City for Science and TechnologyNational Center for Nanotechnology, King Abdulaziz City for Science and TechnologyNational Center for Nanotechnology, King Abdulaziz City for Science and TechnologyPhotochemical Dynamics Group, Institute of Chemical Sciences and Engineering, Lausanne Centre for Ultrafast Science, École polytechnique fédérale de LausanneLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneLaboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de LausanneVarious approaches have been developed to push higher the efficiency of halide perovskite solar cells. Here Alharbi et al. show that ammonium salts treatment can reduce the defect density at the perovskite surface and understand the passivation mechanism with 2D-solid state NMR.https://doi.org/10.1038/s41467-019-10985-5
collection DOAJ
language English
format Article
sources DOAJ
author Essa A. Alharbi
Ahmed Y. Alyamani
Dominik J. Kubicki
Alexander R. Uhl
Brennan J. Walder
Anwar Q. Alanazi
Jingshan Luo
Andrés Burgos-Caminal
Abdulrahman Albadri
Hamad Albrithen
Mohammad Hayal Alotaibi
Jacques-E. Moser
Shaik M. Zakeeruddin
Fabrizio Giordano
Lyndon Emsley
Michael Grätzel
spellingShingle Essa A. Alharbi
Ahmed Y. Alyamani
Dominik J. Kubicki
Alexander R. Uhl
Brennan J. Walder
Anwar Q. Alanazi
Jingshan Luo
Andrés Burgos-Caminal
Abdulrahman Albadri
Hamad Albrithen
Mohammad Hayal Alotaibi
Jacques-E. Moser
Shaik M. Zakeeruddin
Fabrizio Giordano
Lyndon Emsley
Michael Grätzel
Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
Nature Communications
author_facet Essa A. Alharbi
Ahmed Y. Alyamani
Dominik J. Kubicki
Alexander R. Uhl
Brennan J. Walder
Anwar Q. Alanazi
Jingshan Luo
Andrés Burgos-Caminal
Abdulrahman Albadri
Hamad Albrithen
Mohammad Hayal Alotaibi
Jacques-E. Moser
Shaik M. Zakeeruddin
Fabrizio Giordano
Lyndon Emsley
Michael Grätzel
author_sort Essa A. Alharbi
title Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
title_short Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
title_full Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
title_fullStr Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
title_full_unstemmed Atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
title_sort atomic-level passivation mechanism of ammonium salts enabling highly efficient perovskite solar cells
publisher Nature Publishing Group
series Nature Communications
issn 2041-1723
publishDate 2019-07-01
description Various approaches have been developed to push higher the efficiency of halide perovskite solar cells. Here Alharbi et al. show that ammonium salts treatment can reduce the defect density at the perovskite surface and understand the passivation mechanism with 2D-solid state NMR.
url https://doi.org/10.1038/s41467-019-10985-5
work_keys_str_mv AT essaaalharbi atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT ahmedyalyamani atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT dominikjkubicki atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT alexanderruhl atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT brennanjwalder atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT anwarqalanazi atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT jingshanluo atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT andresburgoscaminal atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT abdulrahmanalbadri atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT hamadalbrithen atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT mohammadhayalalotaibi atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT jacquesemoser atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT shaikmzakeeruddin atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT fabriziogiordano atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT lyndonemsley atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
AT michaelgratzel atomiclevelpassivationmechanismofammoniumsaltsenablinghighlyefficientperovskitesolarcells
_version_ 1721444629220425728