Energy-filtering-induced high power factor in PbS-nanoparticles-embedded TiS2

We report on a greatly enhanced power factor for 1%PbS-nanoparticle-embedded TiS2 bulk ceramic, about 1 mW/(mK2) at 300 K and 1.23 mW/(mK2) in a wide temperature range of 573 ∼ 673 K, of which the latter is among the highest so far for TiS2-based thermoelectric materials. Compared to TiS2, the power...

Full description

Bibliographic Details
Main Authors: Yulong Wang, Junfu Wen, Zhenghua Fan, Ningzhong Bao, Rong Huang, Rong Tu, Yifeng Wang
Format: Article
Language:English
Published: AIP Publishing LLC 2015-04-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4918687
Description
Summary:We report on a greatly enhanced power factor for 1%PbS-nanoparticle-embedded TiS2 bulk ceramic, about 1 mW/(mK2) at 300 K and 1.23 mW/(mK2) in a wide temperature range of 573 ∼ 673 K, of which the latter is among the highest so far for TiS2-based thermoelectric materials. Compared to TiS2, the power factor is increased by ∼110% at 300 K and (50 ∼ 35)% at 573 ∼ 673 K. This enhancement is derived from a large increase in Seebeck coefficient which overwhelmed the modest degradation of electrical conductivity, which should be attributed to energy filtering induced by the band gap offset between TiS2 and PbS.
ISSN:2158-3226