Mortality effects of heat waves vary by age and area: a multi-area study in China

Abstract Background Many studies have reported an increased mortality risk from heat waves comparing with non-heat wave days. However, how much the mortality rate change with the heat intensity―vulnerability curve―is still unknown. Such unknown information makes the related managers impossible to as...

Full description

Bibliographic Details
Main Authors: Lingyan Zhang, Zhao Zhang, Tao Ye, Maigeng Zhou, Chenzhi Wang, Peng Yin, Bin Hou
Format: Article
Language:English
Published: BMC 2018-06-01
Series:Environmental Health
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12940-018-0398-6
Description
Summary:Abstract Background Many studies have reported an increased mortality risk from heat waves comparing with non-heat wave days. However, how much the mortality rate change with the heat intensity―vulnerability curve―is still unknown. Such unknown information makes the related managers impossible to assess scientifically life losses from heat waves, consequently fail in conducting suitable integrated risk management measures. Methods We used the heat wave intensity index (HWII) to characterize quantitatively the heat waves, then applied a distributed lag non-linear model to explore the area-specific definition of heat wave, and developed the vulnerability models on the relationships between HWII and mortality by age and by area. Finally, Monte Carlo method was run to assess and compare the event-based probabilistic heat wave risk during the periods of 1971–2015 and 2051–2095. Results We found a localized definition of heat wave for each corresponding area based on the minimum AIC (Akaike information criterion). Under the local heat wave events, the expected life loss during 1971–2015 does distinguish across areas, and decreases consistently in the order of WZ Chongqing, PK Nanjing and YX Guangzhou for each age group. More specifically, for the elders (≥65), the average annual loss (AAL) (and 95% confidence interval) would be 61.3 (30.6–91.9), 38 (3.8–72.2) and 18.7 (7.3–30) deaths per million people. With two stresses from warming and aging in future China, the predicted average AAL of the elders under four Representative Carbon Pathways (2.6, 4.5, 6.0, and 8.5) during 2051–2095 would be 2460, 1675, 465 deaths per million for PK Nanjing, YX Guangzhou and WZ Chongqing, respectively, approximately becoming 8~ 90 times of the AAL during 1971–2015. Conclusion This study found that the non-linear HWII–mortality relationships vary by age and area. The heat wave mortality losses are closely associated with the social-economic level. With the increasing extreme climatic events and a rapid aging trend in China, our findings can provide guidance for policy-makers to take appropriate regional adaptive measures to reduce health risks in China.
ISSN:1476-069X