Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
Abstract Background Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate...
Main Authors: | , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-05-01
|
Series: | BMC Cardiovascular Disorders |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12872-019-1105-4 |
id |
doaj-c1105bda2ca3460d997d10d322e12e2c |
---|---|
record_format |
Article |
spelling |
doaj-c1105bda2ca3460d997d10d322e12e2c2020-11-25T03:35:18ZengBMCBMC Cardiovascular Disorders1471-22612019-05-011911910.1186/s12872-019-1105-4Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined datasetWinnie Chua0Christina L. Easter1Eduard Guasch2Alice Sitch3Barbara Casadei4Harry J. G. M. Crijns5Doreen Haase6Stéphane Hatem7Stefan Kääb8Lluis Mont9Ulrich Schotten10Moritz F. Sinner11Karla Hemming12Jonathan J. Deeks13Paulus Kirchhof14Larissa Fabritz15Institute of Cardiovascular Sciences, University of BirminghamInstitute of Applied Health Research, University of BirminghamHospital Clinic, IDIBAPS, University of BarcelonaInstitute of Applied Health Research, University of BirminghamRadcliffe Department of Medicine, University of OxfordCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityAtrial Fibrillation NETwork (AFNET)IHU-ICAN Institute of Cardiometabolism and NutritionDepartment of Medicine I, University Hospital Munich, Ludwig-Maximilians-UniversityNIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of BirminghamCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityDepartment of Medicine I, University Hospital Munich, Ludwig-Maximilians-UniversityInstitute of Applied Health Research, University of BirminghamInstitute of Applied Health Research, University of BirminghamInstitute of Cardiovascular Sciences, University of BirminghamInstitute of Cardiovascular Sciences, University of BirminghamAbstract Background Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. Methods We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. Discussion This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management.http://link.springer.com/article/10.1186/s12872-019-1105-4Atrial fibrillationPredictive modelCombined databaseStratified therapy |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Winnie Chua Christina L. Easter Eduard Guasch Alice Sitch Barbara Casadei Harry J. G. M. Crijns Doreen Haase Stéphane Hatem Stefan Kääb Lluis Mont Ulrich Schotten Moritz F. Sinner Karla Hemming Jonathan J. Deeks Paulus Kirchhof Larissa Fabritz |
spellingShingle |
Winnie Chua Christina L. Easter Eduard Guasch Alice Sitch Barbara Casadei Harry J. G. M. Crijns Doreen Haase Stéphane Hatem Stefan Kääb Lluis Mont Ulrich Schotten Moritz F. Sinner Karla Hemming Jonathan J. Deeks Paulus Kirchhof Larissa Fabritz Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset BMC Cardiovascular Disorders Atrial fibrillation Predictive model Combined database Stratified therapy |
author_facet |
Winnie Chua Christina L. Easter Eduard Guasch Alice Sitch Barbara Casadei Harry J. G. M. Crijns Doreen Haase Stéphane Hatem Stefan Kääb Lluis Mont Ulrich Schotten Moritz F. Sinner Karla Hemming Jonathan J. Deeks Paulus Kirchhof Larissa Fabritz |
author_sort |
Winnie Chua |
title |
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_short |
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_full |
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_fullStr |
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_full_unstemmed |
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset |
title_sort |
development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the catch me combined dataset |
publisher |
BMC |
series |
BMC Cardiovascular Disorders |
issn |
1471-2261 |
publishDate |
2019-05-01 |
description |
Abstract Background Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. Methods We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. Discussion This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management. |
topic |
Atrial fibrillation Predictive model Combined database Stratified therapy |
url |
http://link.springer.com/article/10.1186/s12872-019-1105-4 |
work_keys_str_mv |
AT winniechua developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT christinaleaster developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT eduardguasch developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT alicesitch developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT barbaracasadei developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT harryjgmcrijns developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT doreenhaase developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT stephanehatem developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT stefankaab developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT lluismont developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT ulrichschotten developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT moritzfsinner developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT karlahemming developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT jonathanjdeeks developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT pauluskirchhof developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset AT larissafabritz developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset |
_version_ |
1724555203078782976 |