Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset

Abstract Background Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate...

Full description

Bibliographic Details
Main Authors: Winnie Chua, Christina L. Easter, Eduard Guasch, Alice Sitch, Barbara Casadei, Harry J. G. M. Crijns, Doreen Haase, Stéphane Hatem, Stefan Kääb, Lluis Mont, Ulrich Schotten, Moritz F. Sinner, Karla Hemming, Jonathan J. Deeks, Paulus Kirchhof, Larissa Fabritz
Format: Article
Language:English
Published: BMC 2019-05-01
Series:BMC Cardiovascular Disorders
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12872-019-1105-4
id doaj-c1105bda2ca3460d997d10d322e12e2c
record_format Article
spelling doaj-c1105bda2ca3460d997d10d322e12e2c2020-11-25T03:35:18ZengBMCBMC Cardiovascular Disorders1471-22612019-05-011911910.1186/s12872-019-1105-4Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined datasetWinnie Chua0Christina L. Easter1Eduard Guasch2Alice Sitch3Barbara Casadei4Harry J. G. M. Crijns5Doreen Haase6Stéphane Hatem7Stefan Kääb8Lluis Mont9Ulrich Schotten10Moritz F. Sinner11Karla Hemming12Jonathan J. Deeks13Paulus Kirchhof14Larissa Fabritz15Institute of Cardiovascular Sciences, University of BirminghamInstitute of Applied Health Research, University of BirminghamHospital Clinic, IDIBAPS, University of BarcelonaInstitute of Applied Health Research, University of BirminghamRadcliffe Department of Medicine, University of OxfordCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityAtrial Fibrillation NETwork (AFNET)IHU-ICAN Institute of Cardiometabolism and NutritionDepartment of Medicine I, University Hospital Munich, Ludwig-Maximilians-UniversityNIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of BirminghamCardiovascular Research Institute Maastricht (CARIM), Maastricht UniversityDepartment of Medicine I, University Hospital Munich, Ludwig-Maximilians-UniversityInstitute of Applied Health Research, University of BirminghamInstitute of Applied Health Research, University of BirminghamInstitute of Cardiovascular Sciences, University of BirminghamInstitute of Cardiovascular Sciences, University of BirminghamAbstract Background Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. Methods We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. Discussion This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management.http://link.springer.com/article/10.1186/s12872-019-1105-4Atrial fibrillationPredictive modelCombined databaseStratified therapy
collection DOAJ
language English
format Article
sources DOAJ
author Winnie Chua
Christina L. Easter
Eduard Guasch
Alice Sitch
Barbara Casadei
Harry J. G. M. Crijns
Doreen Haase
Stéphane Hatem
Stefan Kääb
Lluis Mont
Ulrich Schotten
Moritz F. Sinner
Karla Hemming
Jonathan J. Deeks
Paulus Kirchhof
Larissa Fabritz
spellingShingle Winnie Chua
Christina L. Easter
Eduard Guasch
Alice Sitch
Barbara Casadei
Harry J. G. M. Crijns
Doreen Haase
Stéphane Hatem
Stefan Kääb
Lluis Mont
Ulrich Schotten
Moritz F. Sinner
Karla Hemming
Jonathan J. Deeks
Paulus Kirchhof
Larissa Fabritz
Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
BMC Cardiovascular Disorders
Atrial fibrillation
Predictive model
Combined database
Stratified therapy
author_facet Winnie Chua
Christina L. Easter
Eduard Guasch
Alice Sitch
Barbara Casadei
Harry J. G. M. Crijns
Doreen Haase
Stéphane Hatem
Stefan Kääb
Lluis Mont
Ulrich Schotten
Moritz F. Sinner
Karla Hemming
Jonathan J. Deeks
Paulus Kirchhof
Larissa Fabritz
author_sort Winnie Chua
title Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_short Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_full Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_fullStr Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_full_unstemmed Development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the CATCH ME combined dataset
title_sort development and external validation of predictive models for prevalent and recurrent atrial fibrillation: a protocol for the analysis of the catch me combined dataset
publisher BMC
series BMC Cardiovascular Disorders
issn 1471-2261
publishDate 2019-05-01
description Abstract Background Atrial fibrillation (AF) is caused by different mechanisms but current treatment strategies do not target these mechanisms. Stratified therapy based on mechanistic drivers and biomarkers of AF have the potential to improve AF prevention and management outcomes. We will integrate mechanistic insights with known pathophysiological drivers of AF in models predicting recurrent AF and prevalent AF to test hypotheses related to AF mechanisms and response to rhythm control therapy. Methods We will harmonise and combine baseline and outcome data from 12 studies collected by six centres from the United Kingdom, Germany, France, Spain, and the Netherlands which assess prevalent AF or recurrent AF. A Delphi process and statistical selection will be used to identify candidate clinical predictors. Prediction models will be developed in patients with AF for AF recurrence and AF-related outcomes, and in patients with or without AF at baseline for prevalent AF. Models will be used to test mechanistic hypotheses and investigate the predictive value of plasma biomarkers. Discussion This retrospective, harmonised, individual patient data analysis will use information from 12 datasets collected in five European countries. It is envisioned that the outcome of this analysis would provide a greater understanding of the factors associated with recurrent and prevalent AF, potentially allowing development of stratified approaches to prevention and therapy management.
topic Atrial fibrillation
Predictive model
Combined database
Stratified therapy
url http://link.springer.com/article/10.1186/s12872-019-1105-4
work_keys_str_mv AT winniechua developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT christinaleaster developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT eduardguasch developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT alicesitch developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT barbaracasadei developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT harryjgmcrijns developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT doreenhaase developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT stephanehatem developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT stefankaab developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT lluismont developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT ulrichschotten developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT moritzfsinner developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT karlahemming developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT jonathanjdeeks developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT pauluskirchhof developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
AT larissafabritz developmentandexternalvalidationofpredictivemodelsforprevalentandrecurrentatrialfibrillationaprotocolfortheanalysisofthecatchmecombineddataset
_version_ 1724555203078782976