The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing

We have carried out an experimental study of the turbulence kinetic energy dissipation rate (<inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>), temperature dissipation rate (<inline-formula&g...

Full description

Bibliographic Details
Main Authors: Mohammad Barzegar, Darek Bogucki, Brian K. Haus, Mingming Shao
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/9/2/217
id doaj-c1b4ea4a3ee84afc902ce352fa532c45
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Mohammad Barzegar
Darek Bogucki
Brian K. Haus
Mingming Shao
spellingShingle Mohammad Barzegar
Darek Bogucki
Brian K. Haus
Mingming Shao
The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing
Journal of Marine Science and Engineering
turbulence
non-breaking wave
water surface layer
convection
author_facet Mohammad Barzegar
Darek Bogucki
Brian K. Haus
Mingming Shao
author_sort Mohammad Barzegar
title The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing
title_short The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing
title_full The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing
title_fullStr The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing
title_full_unstemmed The Response of the Water Surface Layer to Internal Turbulence and Surface Forcing
title_sort response of the water surface layer to internal turbulence and surface forcing
publisher MDPI AG
series Journal of Marine Science and Engineering
issn 2077-1312
publishDate 2021-02-01
description We have carried out an experimental study of the turbulence kinetic energy dissipation rate (<inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>), temperature dissipation rate (<inline-formula><math display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula>), and turbulent heat flux (THF) within the water surface layer in the presence of non-breaking wave, surface convection, and horizontal heat and eddy fluxes that play a prominent role in the front. We noted that the non-breaking wave dominates <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> values within the surface layer. While analyzing the vertical <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> variability, the presence of a wave-affected layer from the water surface to a depth of <inline-formula><math display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>1.25</mn><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></mrow></semantics></math></inline-formula> is observed, where <inline-formula><math display="inline"><semantics><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></semantics></math></inline-formula> is the wavelength. <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> associated with non-breaking waves ranged to <inline-formula><math display="inline"><semantics><mrow><mn>4.9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> m<sup>2</sup>/s<sup>3</sup> for the wavelength range of 0.038 m < <inline-formula><math display="inline"><semantics><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></semantics></math></inline-formula> < 0.098 m categorized as the gravity and gravity-capillary wave regimes. <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> values increase for longer <inline-formula><math display="inline"><semantics><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></semantics></math></inline-formula> and non-breaking wave <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> values represent their significant contribution to the ocean energy budget and dynamic of surface layer considering that the non-breaking wave covers the large fraction of ocean surface. We also found that the surface mean square slope (MSS) and wave generated <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> have the same order of magnitude, i.e., MSS <inline-formula><math display="inline"><semantics><mrow><mo>∼</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula>. Besides, we have documented that the small-scale temperature fluctuation change (i.e., <inline-formula><math display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula>) is consistent with the large-scale temperature gradient change (i.e., <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo><</mo><mi>T</mi><mo>></mo><mo>/</mo><mi>d</mi><mi>z</mi></mrow></semantics></math></inline-formula>). The value of the THF is approximately constant within the surface layer. It represents that the measured THF near the water surface can be considered a surface water THF, challenging to measure directly.
topic turbulence
non-breaking wave
water surface layer
convection
url https://www.mdpi.com/2077-1312/9/2/217
work_keys_str_mv AT mohammadbarzegar theresponseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT darekbogucki theresponseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT briankhaus theresponseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT mingmingshao theresponseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT mohammadbarzegar responseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT darekbogucki responseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT briankhaus responseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
AT mingmingshao responseofthewatersurfacelayertointernalturbulenceandsurfaceforcing
_version_ 1721548634475986944
spelling doaj-c1b4ea4a3ee84afc902ce352fa532c452021-04-02T19:32:55ZengMDPI AGJournal of Marine Science and Engineering2077-13122021-02-01921721710.3390/jmse9020217The Response of the Water Surface Layer to Internal Turbulence and Surface ForcingMohammad Barzegar0Darek Bogucki1Brian K. Haus2Mingming Shao3Department of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX 78412, USADepartment of Physical and Environmental Sciences, Texas A&M University, Corpus Christi, TX 78412, USARosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USARosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USAWe have carried out an experimental study of the turbulence kinetic energy dissipation rate (<inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula>), temperature dissipation rate (<inline-formula><math display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula>), and turbulent heat flux (THF) within the water surface layer in the presence of non-breaking wave, surface convection, and horizontal heat and eddy fluxes that play a prominent role in the front. We noted that the non-breaking wave dominates <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> values within the surface layer. While analyzing the vertical <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> variability, the presence of a wave-affected layer from the water surface to a depth of <inline-formula><math display="inline"><semantics><mrow><mi>z</mi><mo>≈</mo><mn>1.25</mn><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></mrow></semantics></math></inline-formula> is observed, where <inline-formula><math display="inline"><semantics><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></semantics></math></inline-formula> is the wavelength. <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> associated with non-breaking waves ranged to <inline-formula><math display="inline"><semantics><mrow><mn>4.9</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula>–<inline-formula><math display="inline"><semantics><mrow><mn>7</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>6</mn></mrow></msup></mrow></semantics></math></inline-formula> m<sup>2</sup>/s<sup>3</sup> for the wavelength range of 0.038 m < <inline-formula><math display="inline"><semantics><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></semantics></math></inline-formula> < 0.098 m categorized as the gravity and gravity-capillary wave regimes. <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> values increase for longer <inline-formula><math display="inline"><semantics><msub><mi>λ</mi><mi mathvariant="normal">w</mi></msub></semantics></math></inline-formula> and non-breaking wave <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> values represent their significant contribution to the ocean energy budget and dynamic of surface layer considering that the non-breaking wave covers the large fraction of ocean surface. We also found that the surface mean square slope (MSS) and wave generated <inline-formula><math display="inline"><semantics><mi>ϵ</mi></semantics></math></inline-formula> have the same order of magnitude, i.e., MSS <inline-formula><math display="inline"><semantics><mrow><mo>∼</mo><mi>ϵ</mi></mrow></semantics></math></inline-formula>. Besides, we have documented that the small-scale temperature fluctuation change (i.e., <inline-formula><math display="inline"><semantics><mi>χ</mi></semantics></math></inline-formula>) is consistent with the large-scale temperature gradient change (i.e., <inline-formula><math display="inline"><semantics><mrow><mi>d</mi><mo><</mo><mi>T</mi><mo>></mo><mo>/</mo><mi>d</mi><mi>z</mi></mrow></semantics></math></inline-formula>). The value of the THF is approximately constant within the surface layer. It represents that the measured THF near the water surface can be considered a surface water THF, challenging to measure directly.https://www.mdpi.com/2077-1312/9/2/217turbulencenon-breaking wavewater surface layerconvection