Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
<p>Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may re...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-01-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/239/2021/amt-14-239-2021.pdf |
id |
doaj-c22190d51ded4943a201603450e9ff43 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
T. Jorge S. Brunamonti Y. Poltera F. G. Wienhold B. P. Luo P. Oelsner S. Hanumanthu B. B. Singh B. B. Singh S. Körner R. Dirksen M. Naja S. Fadnavis T. Peter |
spellingShingle |
T. Jorge S. Brunamonti Y. Poltera F. G. Wienhold B. P. Luo P. Oelsner S. Hanumanthu B. B. Singh B. B. Singh S. Körner R. Dirksen M. Naja S. Fadnavis T. Peter Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds Atmospheric Measurement Techniques |
author_facet |
T. Jorge S. Brunamonti Y. Poltera F. G. Wienhold B. P. Luo P. Oelsner S. Hanumanthu B. B. Singh B. B. Singh S. Körner R. Dirksen M. Naja S. Fadnavis T. Peter |
author_sort |
T. Jorge |
title |
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds |
title_short |
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds |
title_full |
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds |
title_fullStr |
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds |
title_full_unstemmed |
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds |
title_sort |
understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2021-01-01 |
description |
<p>Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60<span class="inline-formula"><sup>∘</sup></span>, owing to the pendulum motion of the payload. Supercooled droplets with radii <span class="inline-formula">></span> 70 <span class="inline-formula">µ</span>m, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 <span class="inline-formula">µ</span>m radius freeze, and droplets <span class="inline-formula"><</span> 5 <span class="inline-formula">µ</span>m radius mostly avoid contact. According to CFD, sublimation of water from an icy intake can account for the occasionally observed unrealistically high water vapour mixing ratios (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi mathvariant="italic">χ</mi><mrow class="chem"><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><mi mathvariant="normal">O</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="51c17c5bd0e3115d2cc798564bb0460f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-239-2021-ie00001.svg" width="24pt" height="12pt" src="amt-14-239-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">></span> 100 <span class="inline-formula">ppmv</span>) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (<span class="inline-formula"><i>p</i></span> <span class="inline-formula"><</span> 20 <span class="inline-formula">hPa</span>).</p> |
url |
https://amt.copernicus.org/articles/14/239/2021/amt-14-239-2021.pdf |
work_keys_str_mv |
AT tjorge understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT sbrunamonti understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT ypoltera understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT fgwienhold understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT bpluo understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT poelsner understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT shanumanthu understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT bbsingh understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT bbsingh understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT skorner understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT rdirksen understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT mnaja understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT sfadnavis understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds AT tpeter understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds |
_version_ |
1724338380524748800 |
spelling |
doaj-c22190d51ded4943a201603450e9ff432021-01-14T07:06:11ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-01-011423926810.5194/amt-14-239-2021Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase cloudsT. Jorge0S. Brunamonti1Y. Poltera2F. G. Wienhold3B. P. Luo4P. Oelsner5S. Hanumanthu6B. B. Singh7B. B. Singh8S. Körner9R. Dirksen10M. Naja11S. Fadnavis12T. Peter13Institute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandDeutscher Wetterdienst (DWD)/GCOS Reference Upper Air Network (GRUAN) Lead Center, Lindenberg, GermanyForschungzentrum Jülich (FZJ), Institute of Energy and Climate Research, Stratosphere (IEK-7), Jülich, GermanyCentre for Climate Change Research, Indian Institute of Tropical Meteorology (IITM), Pune, MoES, IndiaDepartment of Geophysics, Banaras Hindu University, Varanasi, IndiaDeutscher Wetterdienst (DWD)/GCOS Reference Upper Air Network (GRUAN) Lead Center, Lindenberg, GermanyDeutscher Wetterdienst (DWD)/GCOS Reference Upper Air Network (GRUAN) Lead Center, Lindenberg, GermanyAtmospheric Science Division, Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, IndiaCentre for Climate Change Research, Indian Institute of Tropical Meteorology (IITM), Pune, MoES, IndiaInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland<p>Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60<span class="inline-formula"><sup>∘</sup></span>, owing to the pendulum motion of the payload. Supercooled droplets with radii <span class="inline-formula">></span> 70 <span class="inline-formula">µ</span>m, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 <span class="inline-formula">µ</span>m radius freeze, and droplets <span class="inline-formula"><</span> 5 <span class="inline-formula">µ</span>m radius mostly avoid contact. According to CFD, sublimation of water from an icy intake can account for the occasionally observed unrealistically high water vapour mixing ratios (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi mathvariant="italic">χ</mi><mrow class="chem"><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><mi mathvariant="normal">O</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="51c17c5bd0e3115d2cc798564bb0460f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-239-2021-ie00001.svg" width="24pt" height="12pt" src="amt-14-239-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">></span> 100 <span class="inline-formula">ppmv</span>) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (<span class="inline-formula"><i>p</i></span> <span class="inline-formula"><</span> 20 <span class="inline-formula">hPa</span>).</p>https://amt.copernicus.org/articles/14/239/2021/amt-14-239-2021.pdf |