Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds

<p>Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may re...

Full description

Bibliographic Details
Main Authors: T. Jorge, S. Brunamonti, Y. Poltera, F. G. Wienhold, B. P. Luo, P. Oelsner, S. Hanumanthu, B. B. Singh, S. Körner, R. Dirksen, M. Naja, S. Fadnavis, T. Peter
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/239/2021/amt-14-239-2021.pdf
id doaj-c22190d51ded4943a201603450e9ff43
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author T. Jorge
S. Brunamonti
Y. Poltera
F. G. Wienhold
B. P. Luo
P. Oelsner
S. Hanumanthu
B. B. Singh
B. B. Singh
S. Körner
R. Dirksen
M. Naja
S. Fadnavis
T. Peter
spellingShingle T. Jorge
S. Brunamonti
Y. Poltera
F. G. Wienhold
B. P. Luo
P. Oelsner
S. Hanumanthu
B. B. Singh
B. B. Singh
S. Körner
R. Dirksen
M. Naja
S. Fadnavis
T. Peter
Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
Atmospheric Measurement Techniques
author_facet T. Jorge
S. Brunamonti
Y. Poltera
F. G. Wienhold
B. P. Luo
P. Oelsner
S. Hanumanthu
B. B. Singh
B. B. Singh
S. Körner
R. Dirksen
M. Naja
S. Fadnavis
T. Peter
author_sort T. Jorge
title Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
title_short Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
title_full Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
title_fullStr Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
title_full_unstemmed Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
title_sort understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase clouds
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-01-01
description <p>Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60<span class="inline-formula"><sup>∘</sup></span>, owing to the pendulum motion of the payload. Supercooled droplets with radii <span class="inline-formula">&gt;</span> 70 <span class="inline-formula">µ</span>m, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 <span class="inline-formula">µ</span>m radius freeze, and droplets <span class="inline-formula">&lt;</span> 5 <span class="inline-formula">µ</span>m radius mostly avoid contact. According to CFD, sublimation of water from an icy intake can account for the occasionally observed unrealistically high water vapour mixing ratios (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi mathvariant="italic">χ</mi><mrow class="chem"><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><mi mathvariant="normal">O</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="51c17c5bd0e3115d2cc798564bb0460f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-239-2021-ie00001.svg" width="24pt" height="12pt" src="amt-14-239-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">&gt;</span> 100 <span class="inline-formula">ppmv</span>) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (<span class="inline-formula"><i>p</i></span> <span class="inline-formula">&lt;</span> 20 <span class="inline-formula">hPa</span>).</p>
url https://amt.copernicus.org/articles/14/239/2021/amt-14-239-2021.pdf
work_keys_str_mv AT tjorge understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT sbrunamonti understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT ypoltera understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT fgwienhold understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT bpluo understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT poelsner understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT shanumanthu understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT bbsingh understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT bbsingh understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT skorner understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT rdirksen understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT mnaja understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT sfadnavis understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
AT tpeter understandingballoonbornefrostpointhygrometermeasurementsaftercontaminationbymixedphaseclouds
_version_ 1724338380524748800
spelling doaj-c22190d51ded4943a201603450e9ff432021-01-14T07:06:11ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-01-011423926810.5194/amt-14-239-2021Understanding balloon-borne frost point hygrometer measurements after contamination by mixed-phase cloudsT. Jorge0S. Brunamonti1Y. Poltera2F. G. Wienhold3B. P. Luo4P. Oelsner5S. Hanumanthu6B. B. Singh7B. B. Singh8S. Körner9R. Dirksen10M. Naja11S. Fadnavis12T. Peter13Institute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, SwitzerlandDeutscher Wetterdienst (DWD)/GCOS Reference Upper Air Network (GRUAN) Lead Center, Lindenberg, GermanyForschungzentrum Jülich (FZJ), Institute of Energy and Climate Research, Stratosphere (IEK-7), Jülich, GermanyCentre for Climate Change Research, Indian Institute of Tropical Meteorology (IITM), Pune, MoES, IndiaDepartment of Geophysics, Banaras Hindu University, Varanasi, IndiaDeutscher Wetterdienst (DWD)/GCOS Reference Upper Air Network (GRUAN) Lead Center, Lindenberg, GermanyDeutscher Wetterdienst (DWD)/GCOS Reference Upper Air Network (GRUAN) Lead Center, Lindenberg, GermanyAtmospheric Science Division, Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, IndiaCentre for Climate Change Research, Indian Institute of Tropical Meteorology (IITM), Pune, MoES, IndiaInstitute of Atmospheric and Climate Science, ETH Zürich, Zürich, Switzerland<p>Balloon-borne water vapour measurements in the upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements unusable, particularly after crossing low clouds containing supercooled droplets. A large set of (sub)tropical measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using computational fluid dynamics (CFD). We find that the airflow can enter the intake tube with impact angles up to 60<span class="inline-formula"><sup>∘</sup></span>, owing to the pendulum motion of the payload. Supercooled droplets with radii <span class="inline-formula">&gt;</span> 70 <span class="inline-formula">µ</span>m, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 <span class="inline-formula">µ</span>m radius freeze, and droplets <span class="inline-formula">&lt;</span> 5 <span class="inline-formula">µ</span>m radius mostly avoid contact. According to CFD, sublimation of water from an icy intake can account for the occasionally observed unrealistically high water vapour mixing ratios (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi mathvariant="italic">χ</mi><mrow class="chem"><msub><mi mathvariant="normal">H</mi><mn mathvariant="normal">2</mn></msub><mi mathvariant="normal">O</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="24pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="51c17c5bd0e3115d2cc798564bb0460f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-239-2021-ie00001.svg" width="24pt" height="12pt" src="amt-14-239-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">&gt;</span> 100 <span class="inline-formula">ppmv</span>) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only during ascent at high altitudes (<span class="inline-formula"><i>p</i></span> <span class="inline-formula">&lt;</span> 20 <span class="inline-formula">hPa</span>).</p>https://amt.copernicus.org/articles/14/239/2021/amt-14-239-2021.pdf