Influence of Selected Model Parameters on the Electromagnetic Levitation Melting Efficiency

The article presents the results of multivariate calculations for the levitation metal melting system. The research had two main goals. The first goal of the multivariate calculations was to find the relationship between the basic electrical and geometric parameters of the selected calculation model...

Full description

Bibliographic Details
Main Authors: Blazej Nycz, Lukasz Malinski, Roman Przylucki
Format: Article
Language:English
Published: MDPI AG 2021-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/9/3827
Description
Summary:The article presents the results of multivariate calculations for the levitation metal melting system. The research had two main goals. The first goal of the multivariate calculations was to find the relationship between the basic electrical and geometric parameters of the selected calculation model and the maximum electromagnetic buoyancy force and the maximum power dissipated in the charge. The second goal was to find quasi-optimal conditions for levitation. The choice of the model with the highest melting efficiency is very important because electromagnetic levitation is essentially a low-efficiency process. Despite the low efficiency of this method, it is worth dealing with it because is one of the few methods that allow melting and obtaining alloys of refractory reactive metals. The research was limited to the analysis of the electromagnetic field modeled three-dimensionally. From among of 245 variants considered in the article, the most promising one was selected characterized by the highest efficiency. This variant will be a starting point for further work with the use of optimization methods.
ISSN:2076-3417