The influence of manufacturing factors on the formation of layer connections in multilayer exterior walls

Multilayer exterior walls are wide-spread in modern civil construction. One type of such structures is a three-layer wall with insulation layer made of lightweight concrete and exterior layers made of structural concrete. It is necessary to provide durable monolithic connection of concrete layers in...

Full description

Bibliographic Details
Main Authors: Korol' Elena Anatol'evna, Pugach Evgeniy Mikhaylovich, Khar'kin Yuriy Aleksandrovich
Format: Article
Language:English
Published: Moscow State University of Civil Engineering (MGSU) 2014-03-01
Series:Vestnik MGSU
Subjects:
Online Access:http://vestnikmgsu.ru/files/archive/issues/2014/3/ru/7.pdf
Description
Summary:Multilayer exterior walls are wide-spread in modern civil construction. One type of such structures is a three-layer wall with insulation layer made of lightweight concrete and exterior layers made of structural concrete. It is necessary to provide durable monolithic connection of concrete layers in the process of manufacturing this structure in order to decrease the percentage of web reinforcement and increase thermal engineering homogeneity of multilayer exterior walls. Experimental research of three-layer samples with external layers made of claydite-concrete and internal layer made of polystyrene concrete were conducted in order to establish the strength of layer connections in the multilayer exterior wall. Different temporal parameters and concrete strength were assigned during manufacturing of the samples. The samples were tested under axial tension and shear in the layer contact zone. The nature of tensile rupture and shearing failure was checked after the tests. The relations between manufacturing parameters, strength of the concrete used in samples and layer connection strength were established as a result of experimental research. The climatic tests of three-layer exterior wall model made of claydite-concrete and polystyrene concrete were conducted in order to establish the reduction of the layers contact zone strength during the maintenance. The wall model was made of concrete samples of varying strength. The experimental model was exposed to 35 cycles of alternate freezing and thawing in climatic chamber. During freezing and thawing, the strength tests of external and internal layers contact zone by tearing the cylindrical samples were conducted. Consequently, the nature of contact zone strength reduction for the samples with different concrete strength of external and internal layers was established. As a result of the conducted research, the optimal temporal parameters of manufacturing and optimal concrete strength were established. It is recommended to use these parameters in the process of manufacturing multilayer concrete exterior walls in order to provide durability of the concrete layers monolithic connection during maintenance of the structure.
ISSN:1997-0935