Adaptive-Modulation-Enabled WDM Impairment Reduction in Multichannel Optical OFDM Transmission Systems for Next-Generation PONs

The transmission performance of multichannel adaptively modulated optical orthogonal frequency-division multiplexing (AMOOFDM) signals is investigated numerically, for the first time, in optical-amplification-free and chromatic-dispersion-compensation-free intensity-modulation and direct-detection s...

Full description

Bibliographic Details
Main Authors: E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, J. M. Tang
Format: Article
Language:English
Published: IEEE 2010-01-01
Series:IEEE Photonics Journal
Subjects:
Online Access:https://ieeexplore.ieee.org/document/5427124/
Description
Summary:The transmission performance of multichannel adaptively modulated optical orthogonal frequency-division multiplexing (AMOOFDM) signals is investigated numerically, for the first time, in optical-amplification-free and chromatic-dispersion-compensation-free intensity-modulation and direct-detection systems directly incorporating modulated distributed feedback (DFB) lasers (DMLs). It is shown that AMOOFDM not only significantly reduces the nonlinear wavelength-division multiplexing (WDM) impairments induced by the effects of cross-phase modulation and four-wave mixing but also effectively compensates for the DML-induced frequency chirp effect. In comparison with conventional modulated optical orthogonal frequency-division multiplexing (OFDM), which uses an identical signal modulation format across all the subcarriers, AMOOFDM improves the maximum achievable signal transmission capacity of a central WDM channel by a factor of 1.3 and 3.6 for 40- and 80-km standard single-mode fibers, respectively, with the corresponding dynamic input optical power ranges being extended by approximately 5 dB. In addition, AMOOFDM also causes the occurrence of cross-channel complementary modulation format mapping among various WDM channels, leading to considerably improved transmission capacities for all individual WDM channels.
ISSN:1943-0655