Mitochondria, Amyloid β, and Alzheimer's Disease

Hypometabolism is a hallmark of Alzheimer's disease (AD) and implicates a mitochondrial role in the neuropathology associated with AD. Mitochondrial amyloid-beta (Aβ) accumulation precedes extracellular Aβ deposition. In addition to increasing oxidative stress, Aβ has been shown to directly inh...

Full description

Bibliographic Details
Main Authors: Ryan D. Readnower, Andrew D. Sauerbeck, Patrick G. Sullivan
Format: Article
Language:English
Published: Hindawi Limited 2011-01-01
Series:International Journal of Alzheimer's Disease
Online Access:http://dx.doi.org/10.4061/2011/104545
Description
Summary:Hypometabolism is a hallmark of Alzheimer's disease (AD) and implicates a mitochondrial role in the neuropathology associated with AD. Mitochondrial amyloid-beta (Aβ) accumulation precedes extracellular Aβ deposition. In addition to increasing oxidative stress, Aβ has been shown to directly inhibit mitochondrial enzymes. Inhibition of mitochondrial enzymes as a result of oxidative damage or Aβ interaction perpetuates oxidative stress and leads to a hypometabolic state. Additionally, Aβ has also been shown to interact with cyclophilin D, a component of the mitochondrial permeability transition pore, which may promote cell death. Therefore, ample evidence exists indicating that the mitochondrion plays a vital role in the pathophysiology observed in AD.
ISSN:2090-0252