Photoregeneration of Trimethylsilyl Cellulose as a Tool for Microstructuring Ultrathin Cellulose Supports
Microstructured thin films based on cellulose, the most abundant biopolymer on Earth, have been obtained by UV-irradiation of acid-labile trimethylsilyl cellulose thin films in the presence of N-hydroxynaphtalimide triflate as photoacid generator. We demonstrate that this photoregeneration process c...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014-10-01
|
Series: | Molecules |
Subjects: | |
Online Access: | http://www.mdpi.com/1420-3049/19/10/16266 |
Summary: | Microstructured thin films based on cellulose, the most abundant biopolymer on Earth, have been obtained by UV-irradiation of acid-labile trimethylsilyl cellulose thin films in the presence of N-hydroxynaphtalimide triflate as photoacid generator. We demonstrate that this photoregeneration process can be exploited for the manufacture of cellulose patterns having feature sizes down to 1 μm, with potential applications in life sciences. |
---|---|
ISSN: | 1420-3049 |