Renormalized entanglement entropy and curvature invariants

Abstract Renormalized entanglement entropy can be defined using the replica trick for any choice of renormalization scheme; renormalized entanglement entropy in holographic settings is expressed in terms of renormalized areas of extremal surfaces. In this paper we show how holographic renormalized e...

Full description

Bibliographic Details
Main Authors: Marika Taylor, Linus Too
Format: Article
Language:English
Published: SpringerOpen 2020-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2020)050
id doaj-c327d1ba48924d2dbabd99a7eed40257
record_format Article
spelling doaj-c327d1ba48924d2dbabd99a7eed402572020-12-13T12:05:10ZengSpringerOpenJournal of High Energy Physics1029-84792020-12-0120201213310.1007/JHEP12(2020)050Renormalized entanglement entropy and curvature invariantsMarika Taylor0Linus Too1School of Mathematical Sciences and STAG Research Centre, University of SouthamptonSchool of Mathematical Sciences and STAG Research Centre, University of SouthamptonAbstract Renormalized entanglement entropy can be defined using the replica trick for any choice of renormalization scheme; renormalized entanglement entropy in holographic settings is expressed in terms of renormalized areas of extremal surfaces. In this paper we show how holographic renormalized entanglement entropy can be expressed in terms of the Euler invariant of the surface and renormalized curvature invariants. For a spherical entangling region in an odd-dimensional CFT, the renormalized entanglement entropy is proportional to the Euler invariant of the holographic entangling surface, with the coefficient of proportionality capturing the (renormalized) F quantity. Variations of the entanglement entropy can be expressed elegantly in terms of renormalized curvature invariants, facilitating general proofs of the first law of entanglement.https://doi.org/10.1007/JHEP12(2020)050AdS-CFT CorrespondenceGauge-gravity correspondence
collection DOAJ
language English
format Article
sources DOAJ
author Marika Taylor
Linus Too
spellingShingle Marika Taylor
Linus Too
Renormalized entanglement entropy and curvature invariants
Journal of High Energy Physics
AdS-CFT Correspondence
Gauge-gravity correspondence
author_facet Marika Taylor
Linus Too
author_sort Marika Taylor
title Renormalized entanglement entropy and curvature invariants
title_short Renormalized entanglement entropy and curvature invariants
title_full Renormalized entanglement entropy and curvature invariants
title_fullStr Renormalized entanglement entropy and curvature invariants
title_full_unstemmed Renormalized entanglement entropy and curvature invariants
title_sort renormalized entanglement entropy and curvature invariants
publisher SpringerOpen
series Journal of High Energy Physics
issn 1029-8479
publishDate 2020-12-01
description Abstract Renormalized entanglement entropy can be defined using the replica trick for any choice of renormalization scheme; renormalized entanglement entropy in holographic settings is expressed in terms of renormalized areas of extremal surfaces. In this paper we show how holographic renormalized entanglement entropy can be expressed in terms of the Euler invariant of the surface and renormalized curvature invariants. For a spherical entangling region in an odd-dimensional CFT, the renormalized entanglement entropy is proportional to the Euler invariant of the holographic entangling surface, with the coefficient of proportionality capturing the (renormalized) F quantity. Variations of the entanglement entropy can be expressed elegantly in terms of renormalized curvature invariants, facilitating general proofs of the first law of entanglement.
topic AdS-CFT Correspondence
Gauge-gravity correspondence
url https://doi.org/10.1007/JHEP12(2020)050
work_keys_str_mv AT marikataylor renormalizedentanglemententropyandcurvatureinvariants
AT linustoo renormalizedentanglemententropyandcurvatureinvariants
_version_ 1724385352093794304