Anomalous Mode Transitions in High Power Distributed Bragg Reflector Quantum Cascade Lasers

Abstract In this paper, an anomalous spectral data of distributed Bragg reflector (DBR) quantum cascade lasers (QCLs) emitting around 7.6 μm is presented. The two-section DBR lasers, consisting of a gain section and an unpumped Bragg reflector, display an output power above 0.6 W in continuous wave...

Full description

Bibliographic Details
Main Authors: Feng-Min Cheng, Jin-Chuan Zhang, Zeng-hui Gu, Dong-Bo Wang, Ning Zhuo, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, Zhan-Guo Wang
Format: Article
Language:English
Published: SpringerOpen 2019-10-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-019-3151-3
Description
Summary:Abstract In this paper, an anomalous spectral data of distributed Bragg reflector (DBR) quantum cascade lasers (QCLs) emitting around 7.6 μm is presented. The two-section DBR lasers, consisting of a gain section and an unpumped Bragg reflector, display an output power above 0.6 W in continuous wave (CW) mode at room temperature. The anomalous spectral data is defined as a longitudinal mode which moves toward shorter wavelengths with increasing temperature or injection current, which is unexpected. Although the longer wavelength modes are expected to start lasing when raising device temperature or injection current, occasional mode hops to a shorter wavelength are seen. These anomalous mode transitions are explained by means of modal analysis. The thermal-induced change of the refractive index implied by an increase in the temperature or injection current yields nearly periodic transitions between cavity modes.
ISSN:1931-7573
1556-276X