Summary: | This paper presents a short response time, all-silica, gas-flow-velocity sensor. The active section of the sensor consists of a 16 µm diameter, highly optically absorbing micro-wire, which is heated remotely by a 980 nm light source. The heated microwire forms a Fabry–Perot interferometer whose temperature is observed at standard telecom wavelengths (1550 nm). The short response time of the sensor allows for different interrogation approaches. Direct measurement of the sensor’s thermal time constant allowed for flow-velocity measurements independent of the absolute heating power delivered to the sensor. This measurement approach also resulted in a simple and cost-efficient interrogation system, which utilized only a few telecom components. The sensor’s short response time, furthermore, allowed for dynamic flow sensing (including turbulence detection). The sensor’s bandwidth was measured experimentally and proved to be in the range of around 22 Hz at low flow velocities. Using time constant measurement, we achieved a flow-velocity resolution up to 0.006 m/s at lower flow velocities, while the resolution in the constant power configuration was better than 0.003 m/s at low flow velocities. The sensing system is constructed around standard telecommunication optoelectronic components, and thus suitable for a wide range of applications.
|