A Probabilistic Damage Identification Approach for Structures under Unknown Excitation and with Measurement Uncertainties

Recently, an innovative algorithm has been proposed by the authors for the identification of structural damage under unknown external excitations. However, identification accuracy of this proposed deterministic algorithm decreases under high level of measurement noise. A probabilistic approach is th...

Full description

Bibliographic Details
Main Authors: Ying Lei, Ying Su, Wenai Shen
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2013/759102
Description
Summary:Recently, an innovative algorithm has been proposed by the authors for the identification of structural damage under unknown external excitations. However, identification accuracy of this proposed deterministic algorithm decreases under high level of measurement noise. A probabilistic approach is therefore proposed in this paper for damage identification considering measurement noise uncertainties. Based on the former deterministic algorithm, the statistical values of the identified structural parameters are estimated using the statistical theory and a damage index is defined. The probability of identified structural damage is further derived based on the reliability theory. The unknown external excitations to the structure are also identified by statistical evaluation. A numerical example of the identification of structural damage of a multistory shear-type building and its unknown excitation shows that the proposed probabilistic approach can accurately identify structural damage and the unknown excitations using only partial measurements of structural acceleration responses contaminated by intensive measurement noises.
ISSN:1110-757X
1687-0042