How Elemental Stoichiometric Ratios in Microorganisms Respond to Thinning Management in <i>Larix principis-rupprechtti</i> Mayr. Plantations of the Warm Temperate Zone in China

The stoichiometric ratios of elements in microorganisms play an important role in biogeochemical cycling and evaluating the nutritional limits of microbial growth, but the effects of thinning treatment on the stoichiometric ratio of carbon, nitrogen, and phosphorus in microorganisms remain unclear....

Full description

Bibliographic Details
Main Authors: Mengke Cai, Shiping Xing, Xiaoqing Cheng, Li Liu, Xinhao Peng, Tianxiong Shang, Hairong Han
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/12/6/684
Description
Summary:The stoichiometric ratios of elements in microorganisms play an important role in biogeochemical cycling and evaluating the nutritional limits of microbial growth, but the effects of thinning treatment on the stoichiometric ratio of carbon, nitrogen, and phosphorus in microorganisms remain unclear. We conducted research in a <i>Larix principis-rupprechtti</i> Mayr. plantation to determine the main factors driving microbial carbon (C): nitrogen (N): phosphorus (P) stoichiometry following thinning and the underlying mechanisms of these effects. The plantation study varied in thinning intensity from 0% tree removal (control), 15% tree reduction (high density plantation, HDP), 35% tree reduction (medium density plantation, MDP), and 50% tree reduction (low density plantation, LDP). Our results indicated that medium density plantation significantly increased litter layer biomass, soil temperature, and other soil properties (e.g., soil moisture and nutrient contents). Understory vegetation diversity (i.e., shrub layer and herb layer) was highest in the medium density plantation. Meanwhile, thinning had a great influence on the biomass of microbial communities. For example, the concentration of phospholipid fatty acids (PLFA) for bacteria and fungi in the medium density plantation (MDP) was significantly higher than in other thinning treatments. Combining Pearson correlation analysis, regression modeling, and stepwise regression demonstrated that the alteration of the microbial biomass carbon: nitrogen was primarily related to gram-positive bacteria, gram-negative bacteria, soil temperature, and soil available phosphorus. Variation in bacteria, actinomycetes, gram-positive bacteria, gram–negative bacteria, and soil total phosphorus was primarily associated with shifts in microbial biomass carbon: phosphorus. Moreover, changes in microbial biomass nitrogen: phosphorus were regulated by actinomycetes, gram-negative bacteria, and soil temperature. In conclusion, our research indicates that the stoichiometric ratios of elements in microorganisms could be influenced by thinning management, and emphasizes the importance of soil factors and microbial communities in driving soil microbial stoichiometry.
ISSN:1999-4907