A Novel Sparse False Data Injection Attack Method in Smart Grids with Incomplete Power Network Information

The paper investigates a novel sparse false data injection attack method in a smart grid (SG) with incomplete power network information. Most existing methods usually require the known complete power network information of SG. The main objective of this paper is to propose an effective sparse false...

Full description

Bibliographic Details
Main Authors: Huixin Zhong, Dajun Du, Chuanjiang Li, Xue Li
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2018/8503825
Description
Summary:The paper investigates a novel sparse false data injection attack method in a smart grid (SG) with incomplete power network information. Most existing methods usually require the known complete power network information of SG. The main objective of this paper is to propose an effective sparse false data injection attack strategy under a more practical situation where attackers can only have incomplete power network information and limited attack resources to access the measurements. Firstly, according to the obtained measurements and power network information, some incomplete power network information is compensated by using the power flow equation approach. Then, the fault tolerance range of bad data detection (BDD) for the attack residual increment is estimated by calculating the detection threshold of the residual L2-norm test. Finally, an effective sparse imperfect strategy is proposed by converting the choice of measurements into a subset selection problem, which is solved by the locally regularized fast recursive (LRFR) algorithm to effectively improve the sparsity of attack vectors. Simulation results on an IEEE 30-bus system and a real distribution network system confirm the feasibility and effectiveness of the proposed new attack construction method.
ISSN:1076-2787
1099-0526