Attosecond Hard X-ray Free Electron Laser

In this paper, several schemes of soft X-ray and hard X-ray free electron lasers (XFEL) and their progress are reviewed. Self-amplified spontaneous emission (SASE) schemes, the high gain harmonic generation (HGHG) scheme and various enhancement schemes through seeding and beam manipulations are disc...

Full description

Bibliographic Details
Main Authors: Sandeep Kumar, Heung-Sik Kang, Dong-Eon Kim
Format: Article
Language:English
Published: MDPI AG 2013-03-01
Series:Applied Sciences
Subjects:
Online Access:http://www.mdpi.com/2076-3417/3/1/251
Description
Summary:In this paper, several schemes of soft X-ray and hard X-ray free electron lasers (XFEL) and their progress are reviewed. Self-amplified spontaneous emission (SASE) schemes, the high gain harmonic generation (HGHG) scheme and various enhancement schemes through seeding and beam manipulations are discussed, especially in view of the generation of attosecond X-ray pulses. Our recent work on the generation of attosecond hard X-ray pulses is also discussed. In our study, the enhanced SASE scheme is utilized, using electron beam parameters of an XFEL under construction at Pohang Accelerator Laboratory (PAL). Laser, chicane and electron beam parameters are optimized to generate an isolated attosecond hard X-ray pulse at 0.1 nm (12.4 keV). The simulations show that the manipulation of electron energy beam profile may lead to the generation of an isolated attosecond hard X-ray of 150 attosecond pulse at 0.1 nm.
ISSN:2076-3417