Peripheral Dimming: A New Low-Power Technology for OLED Display Based on Gaze Tracking

In this paper, a new low-power technology based on gaze tracking, called peripheral dimming, is proposed for organic light-emitting diode (OLED) displays. The goal of the proposed method is to save power without degrading the perceptual image quality. In the proposed method, the peripheral vision ar...

Full description

Bibliographic Details
Main Authors: Jeong-Sik Kim, Seung-Woo Lee
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9261351/
Description
Summary:In this paper, a new low-power technology based on gaze tracking, called peripheral dimming, is proposed for organic light-emitting diode (OLED) displays. The goal of the proposed method is to save power without degrading the perceptual image quality. In the proposed method, the peripheral vision area on the screen is gradually darkened depending on the distance from the gaze point. In this work, quantitative conditions for preventing degradation of the perceived image quality are studied through a psychophysical experiment by using three video clips. We suggest a lightness reduction ratio (LRR) that determines the amount of reduced luminance per viewing angle based on the lightness. Four conditions of the LRR from 0.1 to 1.0%/degree are applied to each clip. The experiment is designed based on a two-alternative forced choice: a test clip with the proposed method is compared to the original one, and subjects are forced to choose the brighter clip between the two clips shown in random order. In this way, the threshold of the LRR from which people begin to notice a difference between the test and original clips is obtained. The experimental results demonstrate that the proposed method saves the power of OLED displays up to 34.4% while keeping the image quality high in terms of both subjective and objective quality (the mean structural similarity index is higher than 0.94). Therefore, the proposed method will help to enable low-power operation of OLED displays used for head-mounted display devices while maintaining the quality of experience.
ISSN:2169-3536