First-Principles Calculation for the Influence of C and O on the Mechanical Properties of γ-TiAl Alloy at High Temperature
The elastic constants of temperature dependence, thermal expansion coefficient and phonon dispersion relations of γ-TiAl doped with C/O have been investigated using first-principles calculations in order to gain insight into the mechanical performance of γ-TiAl in cases of high tem...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-02-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/9/2/262 |
Summary: | The elastic constants of temperature dependence, thermal expansion coefficient and phonon dispersion relations of γ-TiAl doped with C/O have been investigated using first-principles calculations in order to gain insight into the mechanical performance of γ-TiAl in cases of high temperature. This study shows that γ-TiAl maintains stability at high temperatures introduced by C or O atoms. Importantly, the hardness increases and retains excellent resistance to external pressure. The results indicate that even if the TiAl alloy is doped with C or O atoms, it can also exhibit excellent mechanical properties at a high temperature. |
---|---|
ISSN: | 2075-4701 |