Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa

Background: Multi-drug resistant Pseudomonas aeruginosa pose a clinical challenge globally. This study delineated the molecular mechanisms of resistance to β-lactam antibiotics in multidrug-resistant P. aeruginosa isolated from a single private hospital in Durban, South Africa and ascertained clonal...

Full description

Bibliographic Details
Main Authors: Cosmos B. Adjei, Usha Govinden, Krishnee Moodley, Sabiha Y. Essack
Format: Article
Language:English
Published: AOSIS 2018-06-01
Series:Southern African Journal of Infectious Diseases
Subjects:
ges
vim
Online Access:https://sajid.co.za/index.php/sajid/article/view/19
id doaj-c5aac0dc846a47939086c88e322613d8
record_format Article
spelling doaj-c5aac0dc846a47939086c88e322613d82020-11-25T01:31:33ZengAOSISSouthern African Journal of Infectious Diseases2312-00532313-18102018-06-01332384110.4102/sajid.v33i2.1917Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South AfricaCosmos B. Adjei0Usha Govinden1Krishnee Moodley2Sabiha Y. Essack3Antimicrobial Research Unit, University of KwaZulu-Natal, Westville, DurbanAntimicrobial Research Unit, University of KwaZulu-Natal, Westville, DurbanLancet LaboratoriesAntimicrobial Research Unit, University of KwaZulu-Natal, Westville, DurbanBackground: Multi-drug resistant Pseudomonas aeruginosa pose a clinical challenge globally. This study delineated the molecular mechanisms of resistance to β-lactam antibiotics in multidrug-resistant P. aeruginosa isolated from a single private hospital in Durban, South Africa and ascertained clonality with regard to the isolates carrying β-lactamase genes. Methods: Seventeen P. aeruginosa isolates recovered from sputum, urine, catheter tips, pus swabs, nasal swabs and endotracheal aspirates underwent MIC determination, and phenotypic screening using the Double Disk Synergy Test (DDST) and Modified Hodge Test (MHT) to identify putative extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases and other carbapenemases. Selected β-lactamase encoding genes were genotypically confirmed by PCR and sequencing. REP-PCR was conducted to determine the clonal relatedness of the 11 isolates carrying β-lactamase genes. Results: Sixteen isolates (94%) were resistant to aztreonam and piperacillin, 15 isolates (88%) were resistant to imipenem and ticarcillin, 14 (82%) were resistant to meropenem, and 13 isolates (76%) were resistant to ceftazidime and piperacillin/tazobactam. Resistance to ciprofloxacin and amikacin were 82% and 29% respectively. Of the 17 isolates tested, GES-2, VIM-2 and OXA-21 were present in 10 (59%) four (24%) and one (6%) of the isolates respectively. Three of the isolates harboured both GES-2 and VIM-2 and one isolate harboured OXA-21 and VIM-2. REP-PCR revealed seven clusters with clusters A and F having two (18%) and four (36%) isolates respectively, while the remaining five isolates were unrelated. Conclusion: GES-2 and VIM-2 enzymes were predominantly responsible for carbapenemase resistance. Clones A and F intimated patient-to-patient spread within the ICU and surgical ICU. This apparent dissemination as well as the multi-drug resistance observed points to sub-optimal infection prevention and control and dwindling antibiotic treatment options for P. aeruginosa respectively in this institution.https://sajid.co.za/index.php/sajid/article/view/19multi-drug resistancepseudomonas aeruginosagesvim
collection DOAJ
language English
format Article
sources DOAJ
author Cosmos B. Adjei
Usha Govinden
Krishnee Moodley
Sabiha Y. Essack
spellingShingle Cosmos B. Adjei
Usha Govinden
Krishnee Moodley
Sabiha Y. Essack
Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa
Southern African Journal of Infectious Diseases
multi-drug resistance
pseudomonas aeruginosa
ges
vim
author_facet Cosmos B. Adjei
Usha Govinden
Krishnee Moodley
Sabiha Y. Essack
author_sort Cosmos B. Adjei
title Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa
title_short Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa
title_full Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa
title_fullStr Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa
title_full_unstemmed Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa
title_sort molecular characterisation of multidrug-resistant pseudomonas aeruginosa from a private hospital in durban, south africa
publisher AOSIS
series Southern African Journal of Infectious Diseases
issn 2312-0053
2313-1810
publishDate 2018-06-01
description Background: Multi-drug resistant Pseudomonas aeruginosa pose a clinical challenge globally. This study delineated the molecular mechanisms of resistance to β-lactam antibiotics in multidrug-resistant P. aeruginosa isolated from a single private hospital in Durban, South Africa and ascertained clonality with regard to the isolates carrying β-lactamase genes. Methods: Seventeen P. aeruginosa isolates recovered from sputum, urine, catheter tips, pus swabs, nasal swabs and endotracheal aspirates underwent MIC determination, and phenotypic screening using the Double Disk Synergy Test (DDST) and Modified Hodge Test (MHT) to identify putative extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases and other carbapenemases. Selected β-lactamase encoding genes were genotypically confirmed by PCR and sequencing. REP-PCR was conducted to determine the clonal relatedness of the 11 isolates carrying β-lactamase genes. Results: Sixteen isolates (94%) were resistant to aztreonam and piperacillin, 15 isolates (88%) were resistant to imipenem and ticarcillin, 14 (82%) were resistant to meropenem, and 13 isolates (76%) were resistant to ceftazidime and piperacillin/tazobactam. Resistance to ciprofloxacin and amikacin were 82% and 29% respectively. Of the 17 isolates tested, GES-2, VIM-2 and OXA-21 were present in 10 (59%) four (24%) and one (6%) of the isolates respectively. Three of the isolates harboured both GES-2 and VIM-2 and one isolate harboured OXA-21 and VIM-2. REP-PCR revealed seven clusters with clusters A and F having two (18%) and four (36%) isolates respectively, while the remaining five isolates were unrelated. Conclusion: GES-2 and VIM-2 enzymes were predominantly responsible for carbapenemase resistance. Clones A and F intimated patient-to-patient spread within the ICU and surgical ICU. This apparent dissemination as well as the multi-drug resistance observed points to sub-optimal infection prevention and control and dwindling antibiotic treatment options for P. aeruginosa respectively in this institution.
topic multi-drug resistance
pseudomonas aeruginosa
ges
vim
url https://sajid.co.za/index.php/sajid/article/view/19
work_keys_str_mv AT cosmosbadjei molecularcharacterisationofmultidrugresistantpseudomonasaeruginosafromaprivatehospitalindurbansouthafrica
AT ushagovinden molecularcharacterisationofmultidrugresistantpseudomonasaeruginosafromaprivatehospitalindurbansouthafrica
AT krishneemoodley molecularcharacterisationofmultidrugresistantpseudomonasaeruginosafromaprivatehospitalindurbansouthafrica
AT sabihayessack molecularcharacterisationofmultidrugresistantpseudomonasaeruginosafromaprivatehospitalindurbansouthafrica
_version_ 1725086013770956800