Stochastic renormalization group and gradient flow

Abstract A non-perturbative and continuous definition of RG transformations as stochastic processes is proposed, inspired by the observation that the functional RG equations for effective Boltzmann factors may be interpreted as Fokker-Planck equations. The result implies a new approach to Monte Carl...

Full description

Bibliographic Details
Main Author: Andrea Carosso
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP01(2020)172
Description
Summary:Abstract A non-perturbative and continuous definition of RG transformations as stochastic processes is proposed, inspired by the observation that the functional RG equations for effective Boltzmann factors may be interpreted as Fokker-Planck equations. The result implies a new approach to Monte Carlo RG that is amenable to lattice simulation. Long-distance correlations of the effective theory are shown to approach gradient-flowed correlations, which are simpler to measure. The Markov property of the stochastic RG transformation implies an RG scaling formula which allows for the measurement of anomalous dimensions when transcribed into gradient flow expectation values.
ISSN:1029-8479