Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels

The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model (GBM) to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory, and to apply the calibrated model to simulating the formation of excavation damage zone (ED...

Full description

Bibliographic Details
Main Authors: Kiarash Farahmand, Mark S. Diederichs
Format: Article
Language:English
Published: Elsevier 2021-02-01
Series:Journal of Rock Mechanics and Geotechnical Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1674775520301219
Description
Summary:The objective of this paper is to develop a methodology for calibration of a discrete element grain-based model (GBM) to replicate the hydro-mechanical properties of a brittle rock measured in the laboratory, and to apply the calibrated model to simulating the formation of excavation damage zone (EDZ) around underground excavations. Firstly, a new cohesive crack model is implemented into the universal distinct element code (UDEC) to control the fracturing behaviour of materials under various loading modes. Next, a methodology for calibration of the components of the UDEC-Voronoi model is discussed. The role of connectivity of induced microcracks on increasing the permeability of laboratory-scale samples is investigated. The calibrated samples are used to investigate the influence of pore fluid pressure on weakening the drained strength of the laboratory-scale rock. The validity of the Terzaghi's effective stress law for the drained peak strength of low-porosity rock is tested by performing a series of biaxial compression test simulations. Finally, the evolution of damage and pore pressure around two unsupported circular tunnels in crystalline granitic rock is studied.
ISSN:1674-7755