Summary: | Abstract Perturbiner expansion provides a generating function for all Berends-Giele currents in a given quantum field theory. We apply this method to various effective field theories with and without color degrees of freedom. In the colored case, we study the U(N) non-linear sigma model of Goldstone bosons (NLSM) in a recent parametrization due to Cheung and Shen, as well as its extension involving a coupling to the bi-adjoint scalar. We propose a Lagrangian and a Cachazo-He-Yuan formula for the latter valid in multi-trace sectors and systematically calculate its amplitudes. Furthermore, we make a similar proposal for a higher-derivative correction to NLSM that agrees with the subleading order of the abelian Z-theory. In the colorless cases, we formulate perturbiner expansions for the special Galileon and Born-Infeld theories. Finally, we study Kawai-Lewellen-Tye-like double-copy relations for Berends-Giele currents between the above colored and colorless theories. We find that they hold up to pure gauge terms, but without the need for further field redefinitions.
|