Summary: | Background: Cryptochrome 1 (CRY1) is a key protein that regulates the feedback loop of circadian clock. The abnormal expression of CRY1 was reported in numerous cancers, and contributed to tumorigenesis and progression. But the underlying mechanism remains undefined. Methods: CRY1 overexpression was constructed by lentivirus vector. Gene and protein expression was detected by reverse transcription quantitative polymerase chain reaction and Western blot. Cell proliferation was analyzed by CCK-8 assay. Cell migration ability was analyzed by scratch assay and transwell migration assay. The cAMP concentration was measured by intracellular cAMP assay. Results: Overexpression of CRY1 showed slightly effect on the proliferation and migration of HGC-27 cells. Upon exposure to isoproterenol (ISO), a β-adrenergic receptor agonist, cell proliferation, and migration were inhibited while the cAMP/PKA pathway was activated and ERK1/2 phosphorylation was suppressed. CRY1 overexpression reduced cAMP accumulation, retained ERK1/2 phosphorylation level and alleviated the antiproliferative effect upon exposure to ISO. However, CRY1 overexpression was inoperative on the antiproliferative effect of forskolin (FSK), a direct activator of adenyl cyclase (AC), or 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase (PDE) inhibitor. Conclusions: Our results suggest CRY1 overexpression may protect cells from the antiproliferative effects via activation of the cAMP/PKA pathway through interrupting signal transduction from G protein-coupled receptors to AC.
|